- Home >
- Services >
- Access to Knowledge >
- Trend Monitor >
- Domain of Application >
- Trend snippet: Leveraging next-generation digital twin capabilities to design, optimize, and transform the enterprise
Trends in Security Information
The HSD Trendmonitor is designed to provide access to relevant content on various subjects in the safety and security domain, to identify relevant developments and to connect knowledge and organisations. The safety and security domain encompasses a vast number of subjects. Four relevant taxonomies (type of threat or opportunity, victim, source of threat and domain of application) have been constructed in order to visualize all of these subjects. The taxonomies and related category descriptions have been carefully composed according to other taxonomies, European and international standards and our own expertise.
In order to identify safety and security related trends, relevant reports and HSD news articles are continuously scanned, analysed and classified by hand according to the four taxonomies. This results in a wide array of observations, which we call ‘Trend Snippets’. Multiple Trend Snippets combined can provide insights into safety and security trends. The size of the circles shows the relative weight of the topic, the filters can be used to further select the most relevant content for you. If you have an addition, question or remark, drop us a line at info@securitydelta.nl.
visible on larger screens only
Please expand your browser window.
Or enjoy this interactive application on your desktop or laptop.
Leveraging next-generation digital twin capabilities to design, optimize, and transform the enterprise
Recent MarketsandMarkets research suggests efforts are already underway: The digital twins market had an estimated worth of US$3.8 billion in 2019 and is projected to reach US$35.8 billion in value by 2025. Over the course of the last decade, deployment of digital twin capabilities has accelerated due to a number of factors:
- Simulation: tools for building digital twins are growing in power and sophistication.
- New sources of data
- Interoperability: the ability to integrate digital technology with the real world has improved dramatically.
- Visualization: The sheer volume of data required to create digital twin simulations can complicate analysis and make efforts to gain meaningful insights challenging. Advanced data visualization can help meet this challenge by filtering and distilling information in real time.
- Instrumentation: IoT sensors, both embedded and external, are becoming smaller, more accurate, cheaper, and more powerful.
- Platform: Increased availability of and access to powerful and inexpensive computing power, network, and storage are key enablers of digital twins.
I MAGINE THAT YOU had a perfect digital copy of the physical world: a digital twin. This twin would enable you to collaborate virtually, intake sensor data and simulate conditions quickly, understand what-if scenarios clearly, predict results more accurately, and output instructions to manipulate the physical world. Today, companies are using digital twin capabilities in a variety of ways. In the automotive1 and aircraft2 sectors, they are becoming essential tools for optimizing entire manufacturing value chains and innovating new products. In the energy sector, oil field service operators are capturing and analyzing massive amounts of in-hole data that they use to build digital models that guide drilling efforts in real time.3 In health care, cardiovascular researchers are creating highly accurate digital twins of the human heart for clinical diagnoses, education, and training.4 And in a remarkable feat of smart-city management, Singapore uses a detailed virtual model of itself in urban planning, maintenance, and disaster readiness projects.5 Digital twins can simulate any aspect of a physical object or process. They can represent a new product’s engineering drawings and dimensions, or represent all the subcomponents and corresponding lineage in the broader supply chain from the design table all the way to the consumer—the “as built” digital twin. They may also take an “as maintained” form—a physical representation of equipment on the production floor. The simulation captures how the equipment operates, how engineers maintain it, or even how the goods this equipment manufactures relates to customers. Digital twins may take many forms, but they all capture and utilize data that represents the physical world. Recent MarketsandMarkets research suggests that such efforts are already underway: The digital twins market—worth US$3.8 billion in 2019—is projected to reach US$35.8 billion in value by 2025.6 What accounts for this kind of growth? And why now? After all, digital twin capabilities are not new. Since the early 2000s, pioneering companies have explored ways to use digital models to improve their products and processes.7 While digital twins’ potential was clear even then, many other companies found that the connectivity, computing, data storage, and bandwidth required to process massive volumes of data involved in creating digital twins were cost-prohibitive.
The digital twins trend is gaining momentum thanks to rapidly evolving simulation and modeling capabilities, better interoperability and IoT sensors, and more availability of tools and computing infrastructure. As a result, digital twins’ capabilities are more accessible to organizations large and small, across industries. IDC projects that by 2022, 40 percent of IoT platform vendors will integrate simulation platforms, systems, and capabilities to create digital twins, with 70 percent of manufacturers using the technology to conduct process simulations and scenario evaluations.9 At the same time, access to larger volumes of data is making it possible to create simulations that are more detailed and dynamic than ever.10 For longtime digital twins users, it is like moving from fuzzy, black-and-white snapshots to colorful, high-definition digital pictures. The more information they add from digital sources, the more vivid—and revealing—the pictures become.
What’s new? Over the course of the last decade, deployment of digital twin capabilities has accelerated due to a number of factors: • Simulation. The tools for building digital twins are growing in power and sophistication. It is now possible to design complex what-if simulations, backtrack from detected realworld conditions, and perform millions of simulation processes without overwhelming systems. Further, with the number of vendors increasing, the range of options continues to grow and expand. Finally, machine learning functionality is enhancing the depth and usefulness of insights. • New sources of data. Data from realtime asset monitoring technologies such as LIDAR (light detection and ranging) and FLIR (forward-looking infrared) can now be incorporated into digital twin simulations. Likewise, IoT sensors embedded in machinery or throughout supply chains can feed operational data directly into simulations, enabling continuous real-time monitoring. • Interoperability. Over the past decade, the ability to integrate digital technology with the real world has improved dramatically. Much of this improvement can be attributed to enhanced industry standards for communications between IoT sensors, operational technology hardware, and vendor efforts to integrate with diverse platforms. • Visualization. The sheer volume of data required to create digital twin simulations can complicate analysis and make efforts to gain meaningful insights challenging. Advanced data visualization can help meet this challenge by filtering and distilling information in real time. The latest data visualization tools go far beyond basic dashboards and standard visualization capabilities to include interactive 3D, VR and AR-based visualizations, AI-enabled visualizations, and real-time streaming. • Instrumentation. IoT sensors, both embedded and external, are becoming smaller, more accurate, cheaper, and more powerful. With improvements in networking technology and security, traditional control systems can be leveraged to have more granular, timely, and accurate information on real-world conditions to integrate with the virtual models. • Platform. Increased availability of and access to powerful and inexpensive computing power, network, and storage are key enablers of digital twins. Some software companies are making significant investments in cloud-based platforms, IoT, and analytics capabilities that will enable them to capitalize on the digital twins trend. Some of these investments are part of an ongoing effort to streamline the development of industry-specific digital twin use cases.
Modeling the digital future As the digital twins trend accelerates in the coming years, more organizations may explore opportunities to use digital twins to optimize processes, make data-driven decision in real time, and design new products, services, and business models. Sectors that have capital-intensive assets and processes like manufacturing, utilities, and energy are pioneering digital twin use cases already. Others will follow as early adopters demonstrate first-mover advantage in their respective sectors. Longer term, realizing digital twins’ full promise may require integrating systems and data across entire ecosystems. Creating a digital simulation of the complete customer life cycle or of a supply chain that includes not only first-tier suppliers but their suppliers, may provide an insight-rich macro view of operations, but it would also require incorporating external entities into internal digital ecosystems. Today, few organizations seem comfortable with external integration beyond point-to-point connections. Overcoming this hesitation could be an ongoing challenge but, ultimately, one that is worth the effort. In the future, expect to see companies use blockchain to break down information silos, and then validate and feed that information into digital twin simulations. This could free up previously inaccessible data in volumes sufficient to make simulations more detailed, dynamic, and potentially valuable than ever.