

 GOOD PRACTICES
FOR SECURITY OF
IOT
Secure Software Development Lifecycle

NOVEMBER 2019

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

1

ABOUT ENISA

The European Union Agency for Cybersecurity (ENISA) has been working to make Europe

cyber secure since 2004. ENISA works with the EU, its member states, the private sector and

Europe’s citizens to develop advice and recommendations on good practice in information

security. It assists EU member states in implementing relevant EU legislation and works to

improve the resilience of Europe’s critical information infrastructure and networks. ENISA seeks

to enhance existing expertise in EU member states by supporting the development of cross-

border communities committed to improving network and information security throughout the

EU. Since 2019, it has been drawing up cybersecurity certification schemes. More information

about ENISA and its work can be found at www.enisa.europa.eu.

CONTACT

For contacting the authors please use iot-security@enisa.europa.eu

For media enquiries about this paper, please use press@enisa.europa.eu

AUTHORS

ENISA

ACKNOWLEDGEMENTS
Alessandro Cosenza Bticino S.p.A

Arndt Kohler IBM

Benedikt Abendroth Microsoft Corporation

Carlos Valderrama Geomantis Corporation Limited

Alex Cruz Farmer Cloudflare

Cédric Lévy-Bencheton Cetome

Eric Vetillard NXP

Filip Chytry Avast

Hannes Tschofenig ARM Ltd.

Hagai Bar-El ARM Ltd.

Ian Smith GSM Association (GSMA)

Antonio Jara HOP Ubiquitous S.L. (HOPU)

Julio Hernandez-Castro University of Kent

Mirko Ross asvin.io

Mark Harrison Pentestpartners

Sylvie Wuidart STMicroelectronics

Tiago Da Costa Silva Cisco

Jeff Schutt Cisco

Evangelos Gazis Huawei Technologies Co., Ltd.

Viacheslav Zolotnikov Kaspersky

Ekaterina Rudina Kaspersky

Wolfgang Klasen Siemens AG

Pierre Kobes Siemens AG

Yun Shen Symantec

Adrien Becue Airbus

Dharminder Debisarun Palo Alto Networks

Denis Justinek Biokoda

Ernie Hayden Jacobs

Georges-Henri Leclercq Engie

Gisele Widdershoven Accenture

Jalal Bouhdada Applied Risk

Jens Mehrfeld BSI

Konstantin Rogalas Honeywell

http://www.enisa.europa.eu/
mailto:iot-security@enisa.europa.eu
mailto:press@enisa.europa.eu

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

2

Pascal Oser CERN

Pirmin Heinzer Reporting and Analysis Centre for Information Assurance MELANI

Rafal Leszczyna Gdansk University of Technology

Roberto Minicucci BHGE

Samuel Linares iHackLabs

Stefano Zanero Politecnico di Milano

Victor Fidalgo Villar INCIBE (The Spanish National Cybersecurity Institute)

Vytautas Butrimas NATO Energy Security Center of Excellence

Roger Jardí-Cedó Nestlé S.A.

Aaron Guzman OWASP

Maor Vermucht VDOO

Tommy Ross BSA

José Alejandro Rivas Vidal Applus+ Laboratories

Dirk-Willem van Gulik Web Weaving

LEGAL NOTICE

Notice must be taken that this publication represents the views and interpretations of ENISA,

unless stated otherwise. This publication should not be construed to be a legal action of ENISA

or the ENISA bodies unless adopted pursuant to the Regulation (EU) No 2019/881.

This publication does not necessarily represent state-of the-art and ENISA may update it from

time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the

external sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge.

Neither ENISA nor any person acting on its behalf is responsible for the use that might be made

of the information contained in this publication.

COPYRIGHT NOTICE

© European Union Agency for Cybersecurity (ENISA), 2019

Reproduction is authorised provided the source is acknowledged.

ENISA owns the copyright for the images on the cover and within the report.

For any use or reproduction of photos or other material that is not under the ENISA copyright,

permission must be sought directly from the copyright holders.

ISBN 978-92-9204-316-2, DOI: 10.2824/742784

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

3

TABLE OF CONTENTS

1. INTRODUCTION 7

1.1 OBJECTIVES 8

1.2 SCOPE 8

1.3 TARGET AUDIENCE 8

1.4 METHODOLOGY 8

1.5 STRUCTURE OF THE DOCUMENT 10

2. IOT SECURE SDLC 11

2.1 REQUIREMENTS 12

2.2 SOFTWARE DESIGN 13

2.3 DEVELOPMENT/IMPLEMENTATION 15

2.4 TESTING AND ACCEPTANCE 16

2.5 DEPLOYMENT AND INTEGRATION 17

2.6 MAINTENANCE AND DISPOSAL 18

2.7 SECURITY IN SDLC 19

3. ASSET AND THREAT TAXONOMY 20

3.1 ASSET TAXONOMY 20

3.2 THREAT TAXONOMY 26

3.3 EXAMPLES OF ATTACK SCENARIOS 43

3.3.1 Insecure Credentials in Embedded Devices 43
3.3.2 Lack of Flexibility to Secure Communications 45
3.3.3 Insecure Software Dependencies in Cloud Services 47

4. GOOD PRACTICES FOR SECURE IOT SDLC 49

4.1 SECURITY CONSIDERATIONS 49

4.2 GOOD PRACTICES 50

4.2.1 People 51

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

4

4.2.2 Processes 52
4.2.3 Technologies 54

A ANNEX: MAPPING OF SECURITY MEASURES 57

B ANNEX: SDLC STANDARDS AND BEST PRACTICES 119

C ANNEX: SECURITY IN SDLC MODELS 126

D ANNEX: IOT SDLC TESTING 129

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

5

EXECUTIVE SUMMARY

This ENISA study introduces good practices for IoT security, with a particular focus on software

development guidelines for secure IoT products and services throughout their lifetime.

Establishing secure development guidelines across the IoT ecosystem, is a fundamental

building block for IoT security. By providing good practices on how to secure the IoT software

development process, this study tackles one aspect for achieving security by design, a key

recommendation that was highlighted in the ENISA Baseline Security Recommendations study

which focused on the security of the IoT ecosystem from a horizontal point of view.

Software lies at the core of every IoT system and service, enabling their functionality and

providing value added features. The firmware of IoT devices, implementations of IoT

communication protocols and stacks, Operating Systems (OSs) for IoT products, Application

Programming Interfaces (APIs) supporting interoperability and connectivity of different IoT

services, IoT device drivers, backend IoT cloud and virtualization software, as well as software

implementing different IoT service functionalities, are some examples of how software provides

essence to IoT. Due consideration to supply chain issues, including integration of software and

hardware, is given.

Making use of secure Software Development Life Cycle (SDLC) principles is an effective and

proactive means to avoid vulnerabilities in IoT and thus assist in developing software

applications and services in a secure manner. Several security challenges of the IoT can be

addressed by establishing a baseline of secure development guidelines, such as checking for

security vulnerabilities, secure deployment, ensuring continuity of secure development in cases

of integrators, continuous delivery etc.

It is therefore important to analyze the relevant IoT cybersecurity threats and accordingly to set

forward security measures and specific secure development guidelines to avoid common

software vulnerabilities deriving from insecure practices that might be followed throughout the

SDLC (requirements analysis, software design, software development, implementation,

deployment, integration, maintenance and disposal).

The main contributions of the study include:

 Analysis of security concerns in all phases of IoT SDLC and key points to consider.

 Detailed asset and threat taxonomies concerning the IoT secure SDLC.

 Concrete and actionable good practices to enhance the cybersecurity of the IoT SDLC.

 Mapping of ENISA good practices to related existing standards, guidelines and

schemes.

The study is mainly targeted at IoT software developers, integrators and platform and system

engineers and aims to serve as a point of reference for secure IoT development. Security

considerations and guidelines for all phases of software development are provided, starting from

requirements, software design and development/implementation, all the way to testing and

acceptance, integration and deployment, as well as maintenance and disposal.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

6

The study underlines the need to consider end-to-end IoT security, not only focusing on smart

devices, network protocols and communications, but also taking a step back and methodically

integrating cybersecurity by design principles throughout the software development lifecycle.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

7

1. INTRODUCTION

IoT is at the core of operations for many Operators of Essential Services (OES), as defined in

the NIS Directive, especially considering recent initiatives towards Smart Infrastructures,

Industry 4.0, 5G, Smart Grids, etc. With a great impact on citizens’ safety, security and privacy,

the IoT threat landscape is extremely complex. Therefore, it is important to understand what

exactly needs to be secured and to implement specific security measures to protect the IoT from

cyber threats. ENISA has published studies on both baseline IoT security recommendations, as

well as sectorial IoT security good practices (e.g. smart manufacturing, smart cars, smart

hospitals, etc). While the horizontal and vertical IoT security measures greatly assist in reducing

relevant risks, the design, development, deployment and configuration of secure IoT solutions

should not be neglected.

ENISA strongly recommends security and privacy by design and by default. Accordingly, an

effective and proactive means to reduce the number and severity of vulnerabilities in IoT is to

develop applications in a secure manner, making use of secure Software Development Life

Cycle (sSDLC) principles and developers trained in secure coding. Several security challenges

of the IoT can be addressed by establishing a set of secure development guidelines, such as

checking for security vulnerabilities, secure deployment, ensuring continuity of secure

development in cases of integrators, continuous delivery etc.

In this regard, the aim of this study is to define a set of good practices and guidelines to be

applied in the different phases of the secure SDLC of IoT solutions. During this study, experts

were asked what the main phases of the SDLC were. The vast majority of them considered that

the SDLC comprises up to six phases, as shown in Figure 1.

Figure 1: SDLC phases

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

8

1.1 OBJECTIVES

This ENISA study aims to address the cybersecurity challenges related to the SDLC of IoT

systems and services. The main objectives were to collect good practices, to foster

cybersecurity across the different phases of the IoT SDLC, while also mapping the relevant

assets, threats, risks and attack scenarios.

To this end, the following objectives have been set:

 Analyse the different IoT SDLC phases and underline key cybersecurity challenges in

each one.

 Identify IoT SDLC assets to protect.

 Identify key cybersecurity threats and attack scenarios targeting the IoT SDLC.

 Map identified threats to assets.

 Identify security measures and map them to attack scenarios and threats.

 Identify SDLC principles for IoT code developers.

Accordingly, the study aims to promote collaboration for IoT security in Europe and to increase

awareness of threats and risks, with particular focus on the secure SDLC of IoT systems and

services. In addition, the study will serve as a reference point for future developments and

provide a solid basis for securing IoT software from the requirements analysis to maintenance

and disposal.

1.2 SCOPE

This ENISA study outlines good practices for IoT security with a particular focus on securing

SDLC of IoT systems. This entails defining security measures that apply to the entire IoT

ecosystem (devices, communications/networks, cloud, etc.) in order to bolster the security of the

development process.

During this study, ENISA identified available documentation and standards on IoT security, with

a focus on SDLC and its different phases. ENISA also collected inputs from a number of IoT

security experts through a questionnaire and a series of interviews. Following a thorough

analysis of the identified material and the review of security experts feedbacks, ENISA identified

the main IoT assets and threats targeting the SDLC. Based on these threats, a set of security

measures and good practices were defined to ensure integration of security across the different

phases of the IoT SDLC.

1.3 TARGET AUDIENCE

This study defines good practices for security of IoT, focusing on securing the SDLC of IoT

systems and services. Given the diverse phases that SDLC entails and the complexity of the

IoT ecosystem, the target audience of this study comprises the following profiles:

 IoT software developers

 IoT platform, Software Development Kit (SDK) and Application Programming Interface

(API) developers and consumers

 IoT integrators

1.4 METHODOLOGY

This ENISA study was carried out using a five-step methodological approach as shown in

Figure 2.

1. Scope definition and identification of experts: The first step was to establish the

scope of the study and to pinpoint the main topics to be considered. A concurrent

activity involved identifying the relevant IoT subject matter experts to contribute. The

experts (members of ENISA informal expert groups on IoT and Industry 4.0 security,

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

9

IoTSec and EICS respectively) provided input and expertise in relation to the

objectives of this report.

2. Desktop research: Extensive research of relevant efforts to gather as much

information as possible on securing the IoT SDLC and secure SDLC in general. The

identified documents included existing good practices, publications, standards and

other initiatives on the topics related to the objectives of the report. This served as

support for the analysis of the threats and for the development of the security

measures.

3. Questionnaire and interviews with identified experts: ENISA reached out to the

identified experts in order to collect information and get their point of view. To this end,

an online questionnaire covering various security aspects, such as critical assets, key

threats targeting IoT SDLC and awareness with respect to IoT SDLC standards and

guidelines, was developed. The questionnaire was completed by the identified experts,

and interviews were conducted with experts1 to collect additional valuable inputs to

prepare the report.

4. Analysis and development: The results from the desktop research, online

questionnaire and the interviews were analysed to align them with the objectives of the

report, developing the asset and threat taxonomies. This helped to identify the attack

scenarios, as well as the IoT SDLC security measures. This led to the development of

the first draft of this report.

5. Report write-up and validation: ENISA shared the draft of the report with its relevant

stakeholder communities and reference groups for review. Taking into account the

stakeholders feedbacks, the final version of the report was issued and a validation

face-to-face workshop was organized (on the 8th of October 2019 in Brussels, Belgium)

to present the study results and discuss relevant cybersecurity recommendations.

Figure 2: Methodology followed in the study

1 41 experts filled in the questionnaire. Interviews with experts who expressed availability were conducted with the aim to
cover the various aspects of the IoT ecosystem (service providers, hardware manufacturers, developers, integrators, etc.).

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

10

1.5 STRUCTURE OF THE DOCUMENT

The report is structured as follows:

 Chapter 1 - Introduction: provides introductory information to the report and

introduces the scope, objectives, and the methodology followed.

 Chapter 2 – Secure IoT SDLC: discusses cybersecurity considerations in the different

phases of IoT SDLC. An asset taxonomy is also presented in accordance with their

perceived criticality.

 Chapter 3 – Asset and Threat taxonomy: identifies the security threats affecting IoT

SDLC and details some examples of potential attack scenarios. Detailed description of

threats and mapping to the corresponding assets that they might impact.

 Chapter 4 – Good practices for security of IoT SDLC: lists and describes good

practices and security measures to secure the IoT SDLC.

Further details are provided in the appendix:

 Annex A: Comprehensive description of security measures discussed in Chapter 4

and mapping of the security measures to previous work carried out in the field and to

the corresponding threats that they are intended to mitigate.

 Annex B: List of standards, good practices, security initiatives and other works that

have been used in the mapping of Annex B.

 Annex C: Introduction of the notion of security across different IoT SDLC models.

 Annex D: List of IoT SDLC testing solutions and methodologies.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

11

2. IOT SECURE SDLC

Software lies at the core of every IoT system and service, enabling their functionality and

providing value added features. The firmware of IoT devices, implementations of IoT

communication protocols and stacks, Operating Systems (OSs) for IoT products, Application

Programming Interfaces (APIs) supporting interoperability and connectivity of different IoT

services, architectures that enhance the IoT interoperability, such as Manufacturers Usage

Description (MUD)2, IoT device drivers, backend IoT cloud and virtualization software, as well

as software implementing different IoT service functionalities, are some examples of how

software provides essence to IoT.

However, the pervasive nature of software across the IoT ecosystem and its role as a central

cog in the entire IoT supply chain3, bring security risks. Adversaries may exploit software

vulnerabilities to compromise the security of IoT systems and services and impact the proper

operation of such systems and services. The entire IoT ecosystem, taking into consideration

also the Internet and the external physical systems that make use of IoT need to be taken into

consideration when calculating risk. It is therefore evident that systematically securing IoT

software is essential throughout the lifetime of IoT systems and services in order to deliver

resilient, reliable and failsafe solutions. In this respect, the IoT Software Development Life Cycle

(SDLC) as a whole needs to be secured and proper considerations to be taken into account by

all involved stakeholders from the beginning of the software development process up to

maintenance and disposal.

However, securing IoT, and especially IoT edge-devices, can prove a difficult task for software

developers if hardware comes without basic security capabilities. For example, when

implementing a strong cryptographic algorithm in the software stack, it is the use of a Trusted

Platform Module (TPM) in the hardware that will ensure the private key cannot be exposed.

Therefore, software development for IoT cannot neglect the underlying hardware, which in turn

entails that the security approach has to conceive it as a set where the design of hardware

influences the design of software. Elements such as the Root of Trust or Chain of Trust are

good examples of how software and hardware are related and interconnected and result in joint

security considerations to confront current IoT vulnerabilities such as vulnerabilities in

communication stack derived from hardware implementation (e.g. which could be faced

implementing a hardware isolation and secure boot).

SDLC is a process consisting of different phases that aims at delivering effective and efficient

systems as per their design and functional requirements. There are many ways to achieve this

goal, which are represented by various SDLC models as described in the following. Accordingly,

incorporating security considerations takes place in a different manner based on the adopted

SDLC model. By methodically considering security across all phases of IoT SDLC and applying

appropriate security measures on the corresponding assets that may be affected, the overall

security of the IoT ecosystem is improved.

2 See https://datatracker.ietf.org/doc/rfc8520/
3 See https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/vc-security-infographic.pdf

https://datatracker.ietf.org/doc/rfc8520/

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

12

Securing the IoT SDLC process involves securing the SDLC process across all elements of the

IoT ecosystem, namely IoT end devices, communications, cloud backend and applications for

mobile devices for controlling devices4. Moreover, all types of software running on the

aforementioned elements should be considered, including but not limited to end device

firmware, IoT services/software implementations, network protocol implementations, API source

code, IoT gateways source code, software running on backend cloud servers, etc.

It becomes clear that the complexity and heterogeneity of the different IoT elements and types

of IoT software both exacerbate cybersecurity issues and therefore there is a growing need to

come up with homogeneous, good practices for securing the SDLC. Security considerations of

the different IoT SDLC phases are discussed in what follows.

2.1 REQUIREMENTS

Requirements are the foundation for all that is to follow in the IoT development cycle. During this

phase user, business and functional requirements of the software are being defined.5 These

requirements reflect the intended use of the software and will be translated to specifications that

will guide design, development and maintenance/deployment decisions at a later stage.

Accordingly, it is essential to consider security from this first phase of software development, in

order to ensure as much as possible that security by design principles are taken on board and

that security does not come as an afterthought.

In this respect, during the requirements phase it is essential to conduct a preliminary

identification of software security aspects taking into account the aforementioned (user,

business, legal, regulatory and functional) requirements6. Indicative security requirements

include user password change policies, the need to implement a business recovery plan, the

ability to stay up to date, etc.), cost – benefit and risk analysis results, as well as ones that refer

to the external environment. The latter include for example third-party dependencies, security

standards and/or certification objectives, potential IoT threats, possible IoT attack vectors, etc.

For the sake of quality assurance, it is considered a good practice to monitor and review the

requirements periodically throughout the SDLC. The former will ensure that security is in line

with the general requirements of the software and ensure consistency in development. Security

engineers will need to work with software engineers and business analysts in order to guarantee

the optimal convergence of the two fields. The latter are externalities to the software itself and

usually outside the realm of control of the software engineers. However, they are used to define

security assumptions about the software under development. For example, likelihood of critical

threats, levels of trust to be placed on user accounts, likelihood of attack vector realization, etc.

should be considered. Therefore, the requirements phase in the context of security yields two

outputs: a set of security requirements that depends on the context (connectivity type, target

environment specifics, etc.), as well as a set of security requirements that depends on the

functionalities offered by the solution (business or use cases)7.

Additionally, another important aspect to consider during the identification of requirements is the

physical or hardware requirements needed for development (functional requirements), since

software and hardware are closely related. As part of the system, the security requirements of

software may have certain implications when selecting the physical media (hardware), which

have to be addressed during the SDLC process. Specifically, the security requirements in the

Requirements phase will entail considerations for the selection of hardware in the definition of

the architecture during the Design phase. For instance, if the implementation of a secure boot

4 This classification is based on the IoT high-level reference model introduced in ENISA’s Baseline IoT Security
Recommendations study, available at: https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
5 See https://www.pcisecuritystandards.org/documents/PCI-Secure-Software-Standard-v1_0.pdf
6 Personnel training and establishment of clear and well-defined processes is beneficial in meeting certain cases of
requirements, e.g. legal or regulatory.
7 See https://www.securesoftwarealliance.org/FrameworkSecureSoftware_v1.pdf

https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.pcisecuritystandards.org/documents/PCI-Secure-Software-Standard-v1_0.pdf
https://www.securesoftwarealliance.org/FrameworkSecureSoftware_v1.pdf

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

13

mechanism is selected as a requirement, it will be necessary for hardware to support this type

of Root-of-Trust (RoT) mechanism, potentially requiring the inclusion of physical hardware

security modules (HSM) to manage cryptographic keys. Thus, physical requirements become as

much an aspect for consideration as requirements for communications, processing capacity

required, hard disk space, etc.

To ensure consistency of all above types of requirements, one commonly used technique is that

of quality gateways8. These gateways receive requirements as input and they check them for

completeness, relevance, testability, coherency, traceability and several other qualities. In the

context of security, other interesting techniques include bug bars9. A bug bar is an example of

quality gates, which is used to define the severity thresholds of security vulnerabilities (E.g. no

known vulnerabilities in the application with a “critical” or “important” rating at time of release).

Risk analysis, as well as making use of best practices documents (e.g. OWASP IoT Top1010)

and guidelines11 also help to secure software development by means of predefined checklists of

most common security risks and pitfalls. Risk analysis also involves identification of the assets

that will comprise the software system or service, as well as their interactions and external

dependencies. This may be used to pinpoint asset criticality, data flows and allowed operations

on data, thus yielding significant input to improve software security.

While drawing up requirements, the concept of threat modelling should be borne in mind. It

assumes that potential threats, such as structural vulnerabilities, can be identified, enumerated,

and prioritised.12 Most commonly, the STRIDE (Spoofing, Tampering, Information Disclosure,

Repudiation, Denial of Service and Elevation of Privilege) methodology is used to identify and

classify threats. Threat modelling starts in the requirements phase with the identification of

critical assets and is completed in the software design phase, when the risks have been

evaluated and ranked, and their mitigation has been planned 13.

With IoT, the digital and physical worlds are no longer kept apart from one another. The cyber

physical nature as well as the diverse components and application domains of IoT introduce

additional parameters in the threat modelling equation. These include the consideration of

industry-specific threats that may apply, such as interoperability with legacy-coded and outdated

devices.

Given the dynamic evolution of IoT ecosystems and their inherent adaptation to changing

context, it is evident that requirements identification should cater for flexibility throughout the

lifetime of IoT products and services. In terms of securing the IoT SDLC, this translates to

iterative rounds of security requirements identification and the need to consider all possible use

case scenarios of the IoT system or service.

2.2 SOFTWARE DESIGN

During the software design phase the on device architecture and the design of the IoT solution

are created. This phase involves the creation of a set of documents that describe how the

user/business and functional requirements will be translated to system specifications and

essentially how the IoT solution will work. Therefore, it is important to make sure that

8 See http://ptgmedia.pearsoncmg.com/images/9780321815743/samplepages/0321815742.pdf
9 See https://docs.microsoft.com/en-us/previous-versions/windows/desktop/cc307404(v=msdn.10)
10 See https://www.owasp.org/images/1/1c/OWASP-IoT-Top-10-2018-final.pdf
11 See https://www.owasp.org/images/6/67/OWASPApplicationSecurityVerificationStandard3.0.pdf
12 See https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
13 See https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-
of-Things_joa_Eng_0517.pdf

http://ptgmedia.pearsoncmg.com/images/9780321815743/samplepages/0321815742.pdf
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/cc307404(v=msdn.10)
https://www.owasp.org/images/1/1c/OWASP-IoT-Top-10-2018-final.pdf
https://www.owasp.org/images/6/67/OWASPApplicationSecurityVerificationStandard3.0.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

14

specifications meet all the requirements defined in the previous phase. For instance, in IoT

devices the specifications for user passwords should be included as requirement. In turn, during

the design phase, this would entail implementing functions to manage user passwords as

required (change cycles, minimum password length, special symbols, etc.).

From a security standpoint, a risk-based approach that identifies pertinent threats is followed to

incorporate security in the software design. The security requirements established in the

previous phase are being reviewed using threat modelling and attack surface analysis

techniques. Threat modelling is the backbone of the security activities 14 carried out during the

definition of security requirements, but can also be further refined during software design.

Additionally, attack surface analysis should consider the attacker’s potential motivations,

intentions and capabilities, as well as the attack avenues of the system, the impact and the

probability. As stated in requirements section, risks can also be entailed by business features.

For this reason, it is necessary to design specific security controls to prevent such potential

issues.

Effective identification and mitigation of security threats in early design phase needs to be

prioritized as it can be very hard to mitigate them in later phases of the development lifecycle. 15

Moreover, other provisions in the software design, such as the chain of trust and recovery plan

of the solution and the integration of security mechanisms (FOTA, remote credential

management, etc.) in this phase safeguards the operation of IoT systems and prevents costly

security implementations into IoT solutions after they have been developed or during the remote

sustain/maintenance16.

Architectures primarily focus on overarching, cross-cutting concerns for the IoT system that

pursue mainly high scalability and integration of diverse technologies and systems. A security

architecture for IoT relies mainly on the CIA triad (Confidentiality, Integrity, and Availability). In

addition, other relevant aspects like access control, policy configuration, or security lifecycle

should be considered. Guidelines, secure design patterns and principles aid in this mission.

These principles apply to the design of any IoT solution, although there may be variations

depending on the specific functionalities or limitations of the component being designed or the

context in which is going to operate. For instance, cloud platforms require privilege-based

administration roles, and, depending on the use case, IoT devices may require updates and

measures that reassure minimum disruption17.

However, IoT is highly related to the cyber-physical world and, in this respect, in addition to the

CIA triad, safety implications are pertinent and particularly relevant when designing an IoT

solution. Due to the use of sensors and actuators that act as frontiers between the logical and

physical worlds, safety aspects and considerations should also be considered during the design

phase. For instance, if the design principles are not used, a software solution could be built

without taking into account the “least privilege principle”, so an attacker could leverage this

vulnerability to take control of an automated process and cause a process malfunction, which in

turn could have a significant impact on human safety.

14 See https://safecode.org/wp-
content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
15 See https://www.vdoo.com/blog/integrating-security-into-the-iot-sdlc/
16 See https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-
1115-FINAL....pdf
17 See https://safecode.org/wp-
content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf

https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://www.vdoo.com/blog/integrating-security-into-the-iot-sdlc/
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

15

2.3 DEVELOPMENT/IMPLEMENTATION

In the Development/Implementation phase, specifications and software design diagrams written

in an appropriate notation are transposed into code. Therefore, what is defined in the two

previous phases plays a crucial role in the successful execution of the development process.

The foundation of IoT secure software development relies on secure code. Code should be

built, tested, integrated, maintained, and updated with security aspects in mind. Risk mitigation

as evaluated by means of the threat model carried out in the Design phase is implemented in

the code. Given the hardware and software constraints of IoT devices, integrating security in the

code of this ecosystem poses challenges to developers as they can't build a code base with full-

fledged security as in traditional IT systems. Code must be optimised to ensure that every

instruction counts but, at the same time, secure development practices (e.g., SANS Top 25

Software Errors18) and appropriate security solutions for all different elements, such as access

interface, applications, data and device layers, need to be leveraged. For example, in IoT

communications, the use of lightweight authentication and encryption have proved to be good

security techniques that fit to the specific purpose.19

In the IoT space, product releases may vary in frequency. Coding needs to keep the pace and

to that end, the use of secure code guidelines and coding standards20 21 can prove extremely

helpful to the developers to identify known vulnerabilities, avoid insecure coding practices and

use the built-in security specific features that certain programming languages may offer.

Additionally, there are tools and methods to verify the quality of security for software

development languages. Secure IoT frameworks offer to developers a rapid and effective

manner to integrate security components, prevent security weaknesses and provide security by

design from the beginning of the development.22

To ensure continuous secure software coding operations, software development should be

accompanied by continuous integration of security best practices and assessments.

Fundamental testing activities should be consistently addressed in this phase. This way, only a

signed-off build is propagated to the next phase. A realistic way of maintaining security in an

environment that grows so rapidly and changes so quickly is to automate it. Automated tools

such as Static Code Analysis tools are a useful complement to manual inspection of code to

help detect security issues during the software development phase. 23 Static Application

Security Testing (SAST) methodology allows the automation of the security process and

enables early elimination of application-layer vulnerabilities. Although SAST takes place in the

case of continuous integration (Agile / DevOps / DevSecOps) it can be carried out manually in

other software methodologies. Conversely, other less automated activities- like code review,

build environment, anti-tampering techniques, and configuration management24 25, -complement

the testing and verification process determined to improve resilience.

Especially for IoT, it is a common practice for developers to consume third-party APIs,

frameworks, libraries and tools (either commercial off-the-shelf-components (COTS) or open

source software (OSS)) for the compilation and the build process. In a world where there is no

need to reinvent the wheel, this approach brings numerous benefits as it allows developers to

focus on product-specific features and reduce time to market and development costs. However,

18 See https://www.sans.org/top25-software-errors/
19 See https://pdfs.semanticscholar.org/6aec/74231f1716bd350b1c60b2bc3168471e1c13.pdf
20 See https://www.iotcentral.io/blog/security-first-design-for-iot-devices
21 See https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-
of-Things_joa_Eng_0517.pdf
22 See https://github.com/zettajs/zetta/wiki
23 See https://www.owasp.org/index.php/Static_Code_Analysis
24 See https://www.iotcentral.io/blog/security-first-design-for-iot-devices
25 See https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-
of-Things_joa_Eng_0517.pdf

https://www.sans.org/top25-software-errors/
https://pdfs.semanticscholar.org/6aec/74231f1716bd350b1c60b2bc3168471e1c13.pdf
https://www.iotcentral.io/blog/security-first-design-for-iot-devices
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf
https://github.com/zettajs/zetta/wiki
https://www.owasp.org/index.php/Static_Code_Analysis
https://www.iotcentral.io/blog/security-first-design-for-iot-devices
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

16

these third-party components are often treated as black boxes and are less scrutinized than

internally developed components; hence they come with risk. It is essential to be aware of the

vulnerabilities that derive from these components and they should be considered and evaluated

before integrating them into the IoT system. For example, specific parameters should be

checked before using these external components, such as active community support for OSS

components, current market use of these components, integration-ready state, latest version

available, supporting documentation, frequency and number of reported CVEs, etc. It is also a

good practice to use well-established and secure libraries and frameworks, so that the final

outcome is less prone to inherit security vulnerabilities of the components that it integrates.
26,27,28,29

IoT development requires a standard approach to developing secure products. When

developing software, it is important to organise the process so that developers can work on new

versions that are less vulnerable or provide better services. Configuration management

integrates processes, policies and tools to make software systems more secure and flexible. In

this regard, Version Control Systems (VCS), secure bootstrap capability and other equivalent

methods become noteworthy means to achieve these goals.30

2.4 TESTING AND ACCEPTANCE

The testing and acceptance phase involves all necessary steps to verify that the developed

software actually meets the identified requirements and design principles of the previous

phases. For this reason, a variety of tests (each serving a different purpose) are performed on

the software. These tests may be automated or manual, and both the source code (static

analysis) and the running software (dynamic analysis) need to be checked. Automated tests

may significantly reduce the required time to conduct them compared to manual tests and they

can also increase consistency and efficiency by being highly scalable. Conversely, they

introduce an additional degree of uncertainty in the testing phase and need to be redesigned to

be more effective. This uncertainty results from the size of the code base to which the tests are

applied and from the poor design for a larger scale of applications, since they can produce

varying numbers of false positives/negatives compared to manual testing31. During the testing

phase, it is therefore important to assess the particular needs of the software product and

establish the most suitable and efficient testing strategy and build the appropriate testing

environment (e.g. simulated or emulated environment, digital twin, test datasets, capturing of

outputs for post-processing, fuzzing, pentesting, sandboxing, etc.).

In terms of security, testing during this phase (e.g. fuzzing testing,- see Annex D) helps to verify

the proper and effective use of identified security measures and controls, as well as to identify

and highlight potential vulnerabilities and weaknesses already present in the developed

software prior to integration and deployment. In particular for the IoT SDLC testing phase, it is

important to consider all elements of the IoT ecosystem as previously described, i.e. IoT end

devices, firmware and communications32,33. There is an added level of complexity in designing

and building an appropriate testing strategy and a testing environment for IoT systems and

services, given the many interdependencies of the numerous fundamental elements of IoT. It is

26 See https://safecode.org/wp-
content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
27 See https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
28 Third party components from proprietary source may come with a vendor commitment but less transparency and unverified security properties. Open-
source based components come with no such commitment but with full transparency and the advantage that a large community can maintain it in security
conditions.
29 See https://github.com/jeremylong/DependencyCheck/blob/master/RELEASE_NOTES.md#version-523-2019-11-11
30 See https://www.bosch-si.com/iot-platform/insights/downloads/iot-security.html
31 See https://safecode.org/wp-
content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
32 See https://www.iotcentral.io/blog/security-first-design-for-iot-devices
33 See https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-
of-Things_joa_Eng_0517.pdf

https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://github.com/jeremylong/DependencyCheck/blob/master/RELEASE_NOTES.md#version-523-2019-11-11
https://www.bosch-si.com/iot-platform/insights/downloads/iot-security.html
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://www.iotcentral.io/blog/security-first-design-for-iot-devices
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

17

thus important to carefully plan and ensure that all interfaces, data flows and externalities are

fully and correctly assessed during testing and acceptance.

An important aspect of testing and acceptance is that of code review. While this may be

considered an advanced and time-consuming solution (especially considering the large variety

of many IoT systems and services and the frequent use of third-party libraries), this type of test

may expose underlying software vulnerabilities and weaknesses that are undetectable by other

techniques (e.g. logic bombs).

For a comprehensive listing of SDLC tests, the reader may refer to Annex D. Based on risk and

threat assessment and taking into account security requirements and software specifics, the

selection of the most suitable testing suite should be performed.

2.5 DEPLOYMENT AND INTEGRATION

The deployment and integration phase follows the acceptance of the software subject to

successful testing in the previous phase, i.e. after it has been approved for release. It involves

integrating all necessary elements of the software in the production environment and its

deployment. Deployment should be carefully planned, executed and communicated to all actors

involved (e.g. end users, production teams, development teams, integrators, etc.), in order to

ensure a smooth deployment in the target environment. This is particularly challenging in the

IoT realm, given the many interdependencies involved and the fact that IoT solutions are usually

deployed in widely open environments, where administrators and the support team might not

have full control. Another particularity of IoT deployment involves the heterogeneity of

deployment environments, e.g. IoT devices for firmware solutions, cloud-servers for back-end

IoT services, gateways and network components in the case of IoT communication protocols

implementations, etc. It may also be the case that an IoT software project could require aspects

of all these possible deployment environments or target environments (e.g. whether an IoT

device meets the requirements, or if the security configuration of an IoT device needs to be

adapted to the target environment). Therefore, choosing the right deployment strategy (e.g.

Canary, A/B testing, Blue/Green, etc.34) is of paramount importance and requires to weight

options like the impact of change on the system and/or on the end-users, rollout/rollback

timings, downtime requirements, etc.

An important step in secure IoT deployment is that of asset and user authorization. To this end,

adaptive user-rights administration interfaces, device authentication and user authentication

mechanisms are beneficial. Additionally, IoT systems allowing self-enrolment should provide a

means for an administrator to check and accept or reject the enrolment request.

Furthermore, security risks involved with deployment should be given proper emphasis in the

deployment and integration phase. The aim is to be able to maintain secure, stable and failsafe

operation of the software during deployment and for this reason appropriate metrics are

monitored to ensure the “health” of the running, “live” software. Such metrics might include

number of bugs reported, number of identified vulnerabilities and weaknesses, number of

exploit attempts, etc.

An essential part of deployment involves change management and in the case of IoT SDLC this

mainly refers to software updates. The latter mainly support configuration and vulnerability

management, but may also be needed for other reasons. All patches should follow a structured

change management approach and, in the case of security, should ensure that any updates to

the system retain at least the same level of security that was provided by the previous solution.

In terms of deployment for IoT systems and services and software updates, an added level of

34 See https://thenewstack.io/deployment-strategies/

https://thenewstack.io/deployment-strategies/

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

18

complexity derives from the fact that these mostly take place over the air, via wireless channels

and making use of backend servers for the propagation of patches. It is evident that all these

elements increase the potential attack surface and therefore should be mitigated by appropriate

security controls. Software updates and patch management are also among the tasks of the

forthcoming phase, namely maintenance and disposal.

2.6 MAINTENANCE AND DISPOSAL

The last phase of IoT SDLC involves maintenance and disposal. It is important to not disregard

activities and tasks that fall under this phase. This is because software deployed in production

needs to be constantly maintained to ensure availability and integrity of the provided

functionality. The pervasive and adaptive nature of IoT solutions and the fact that devices may

be appropriated by users, further strengthens the need for maintenance operations. In addition,

given the fact that IoT end devices are many times located in uncontrolled or mission-critical

environments and even in outdoor settings, maintenance planning should integrate relevant

features (e.g. consistent remote secure (over-the-air) update procedures, updates assuming no

physical access/no user-interaction, intuitive update timings with minimum disruption, etc.).

Moreover, in terms of security, incident management is an ongoing activity during maintenance.

All elements of the software, as well as all other integral parts of an IoT solution need to be

continuously monitored to ensure threat detection and response. It is thus a good practice to

perform frequent vulnerability assessments, penetration tests, security maintenance and threat

intelligence tasks to prevent attacks and threats to the cloud, the network and IoT end devices,

as well as the applications developed for such devices.35 36 Constrained and low-powered IoT

devices may not able to create or store log files, so preparing for accountability is very

important. In addition, service continuity planning by means of automatic backups or

redundancy helps to prepare for malfunctioning or service disruptions caused by security

incidents.

Other maintenance and disposal tasks include management of software updates, regulatory

compliance (by monitoring the corresponding legal and regulatory framework) and secure

software and device disposal. Similarly to the previous phase, management of software updates

needs to cope with the particularities of the IoT ecosystem. One additional element to consider

is the lifetime of IoT devices, which in some cases might be long (e.g. smart car). Combined

with vulnerability management, security patches and updates should be issued in a timely and

reliable manner. Recent interesting related work includes IETF SUIT (Software Updates for

Internet of Things)37.

Additionally, it is important to ensure that when IoT maintenance functions are delegated to third

parties (contractors), this takes place in well-looked-after security conditions, i.e. access control,

permission handling, audit and accountability.

Lastly, when IoT software becomes obsolete (for example, when a product series of IoT end

devices is decommissioned), it is important to ensure a secure disposal to preserve privacy

management, providing data erasure mechanisms. The main risk involved is the abuse of the

various types of data that the IoT software makes use of and has probably cached for

processing. Such sensitive data types could include patient health records, Wi-Fi credentials to

access the organisation/enterprise network, or operational knowledge used to gain a

competitive advantage.

35 See https://www.iotcentral.io/blog/security-first-design-for-iot-devices
36 See https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-
of-Things_joa_Eng_0517.pdf
37 See https://datatracker.ietf.org/doc/draft-ietf-suit-architecture/

https://www.iotcentral.io/blog/security-first-design-for-iot-devices
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf
https://datatracker.ietf.org/doc/draft-ietf-suit-architecture/

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

19

2.7 SECURITY IN SDLC

An important aspect that is commonly overlooked when integrating security in a process (such

as in the SDLC) is that of assessment and evaluation. Understanding the current cybersecurity

posture is the first step towards establishing a plan to maintain this posture and improve it. In

this respect, Security Maturity Models (SMM) are a very useful tool since they guide

organisations to define their level of security in accordance with the requirements they wish to

fulfil38. The maturity of security assesses the understanding of the current level of security, its

needs, benefits, and the cost of its support. This assessment takes into account specific threats

to the regulatory and compliance requirements of an organisation's industry, the unique risks

present in an environment, and the organisation's threat profile. There are numerous standards

that serve as tools to evaluate the security of a software project. Some of the most widely

recognised industry standards are: Common Criteria (CC)39, Capability Maturity Model

Integration (CMMI)40, Building Security in Maturity Model (BSIMM)41, Security for industrial

automation and control systems Part 4-1 - Secure product development lifecycle requirements

(IEC 62443-4-1), or Open Software Assurance Maturity Model (OpenSAMM)42, among others.

Throughout the document, security will be addressed from the need to define a procedure to

carry out a secure software development process and its management (governance), as well as

from the implementation and execution of the necessary measures to that security be

embedded during the different phases of the SDLC.

Along these lines, security should be a fundamental principle across all six phases of the IoT

SDLC. Relevant and applicable controls need to be carried out in each phase to evaluate the

state of security (e.g. establishing security gates and metrics). In order to ensure that software

meets all required security conditions before proceeding to following phases, it is necessary to

implement security gates. The severity thresholds that indicate the completion of each phase

are defined by means of metrics. These metrics are used to analyse, detect and correct

vulnerabilities throughout the development process.

Complementary to security, a cross-cutting activity during the SDLC process that is often not

considered as essential is the documentation process. This is due to the complexity of the IoT

solutions, the number of resources involved in a development process, the IoT interconnectivity,

the number of external and internal components, the module integrations, configurations,

designs, requirements, etc. It is crucial to have a good documentation and a documentation

management system that supports the SDLC process to make it understandable, traceable, and

subject to monitoring and auditing.

38 See https://www.iiconsortium.org/pdf/SMM_Description_and_Intended_Use_FINAL_Updated_V1.1.pdf
39 See https://www.commoncriteriaportal.org/
40 See https://cmmiinstitute.com/
41 See https://www.bsimm.com/
42 See https://www.opensamm.org/

https://www.iiconsortium.org/pdf/SMM_Description_and_Intended_Use_FINAL_Updated_V1.1.pdf
https://www.commoncriteriaportal.org/
https://cmmiinstitute.com/
https://www.bsimm.com/
https://www.opensamm.org/

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

20

3. ASSET AND THREAT
TAXONOMY

3.1 ASSET TAXONOMY
To focus on the details of IoT security in the SDLC it is essential to start from identification and

decomposition of assets of such vast and complex environments focusing on software

development. Here we provide an overview of the key asset groups and assets that need to be

protected. IoT SDLC assets are classified into key groups depicted in Figure 3 and described in

Table 1. It should be noted that the lowest level of the taxonomy is indicative and not

exhaustive. For instance, not all types of data are listed, just some representative ones.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

21

Figure 3: Asset taxonomy

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

22

Table 1: Asset taxonomy

Asset group Subgroup Indicative assets Description

Human factor

Business owners /
BI analysts

Individual or team responsible for analysing data that are
used by a business or organisation or a specific business
function.

Software Team

Testers Q/A
People in charge of the quality of the software (QA staff),
by means of checking it.

Integrators
Specialist people in putting different IT components
together, working as a whole system

Software Developers People that develop software applications

Software Architects
Expert who makes high-level design choices and dictates
technical standards, including software coding standards,
tools, and platforms.

UI/UIX Designers
Designers responsible for the user interface of an IoT
application that need to work closely together.

Software Designers
Software designers that use principles of science and
mathematics to develop IoT applications.

Security Team

(Chief) Information
Security Officer

International Standards and Best Practices applicable in
the work process management

Security engineers

Security engineers are responsible for the security
aspects in the design of systems that need to be able to
deal robustly with possible sources of disruption, ranging
from natural disasters to malicious acts.

Penetration Testers
Professional specialized in security that attempt to crack
into a system for the purposes of security testing.

Incident Response Team
 Group of people who prepare for and respond to any
emergency incident, such as a natural disaster or an
interruption of business operations.

Operators/Administ
rators/DevOps/SRE
(Operations Team)

People with this role undertake ongoing activities that are
required for the provision of IoT software or services.

End Users People that use the software applications

Contractors/Sub-
contractors

Entities or companies that provide services or products
relevant to the processes of IoT software development.

Decision makers /
Project Managers

Project managers are accountable for the success of a
project and their responsibilities include the planning and
the execution of a project, building its comprehensive
work plan, and managing the budget.

Software design Requirements

Business requirements
High-level description of what the intended product or
services should do based on the business and/or
stakeholders needs

Security
assessment
s

Metrics
Quantifiable measures that are used to track and assess
the status of a specific business process.

Quality
gateways

Methodology for the quality assurance of an SDLC
process.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

23

Use cases
Methodology used to identify and analyse the behaviour
of a system when responding to an event.

Specifications
Detailed and technical documents that describe the
technical functionalities of the end product or service.

Design Tools
Tools to aid in the design software or systems, also
known as CASE tools: Computer Aided Software
Engineering.

Software
development

Underlying
components

Hardware components

Components on which the intended software relies or is
built on.

Firmware

Operating Systems
(ROS)

Compilers

Simulation environments

Guidelines

Software security
checklist A set routines or practices that streamline a particular

processes.

Manuals

Development tools

IoT platforms
A multi-layer technology that enables management tasks
and data visualisation.

SDKs
Software development kits: a set of functionalities and
tools to allow developing software in a programming
language.

Frameworks
A set of functionalities and libraries to ease and speed up
the software development, being the foundation of
software applications.

IDEs
Integrated development environment: software
application that provides a set of tools to aid in software
development.

Algorithm Training tools

Algorithms to perform a task without instructions,
resorting to patterns and inference. A subset of artificial
intelligence, the algorithms that make a mathematical
model from "training data" depend on the kind of
problem, the computing resources available, and the
nature of the data (supervised, unsupervised,
classification, regression, etc.).

Software
deployment

Automation testing
frameworks

Integration A set of guidelines for creating and designing test cases.
It is a conceptual part of automated testing that helps
testers to use resources more efficiently. Security

Deployment
strategies

Deployment strategies provide a way to change or
upgrade an application without downtime in a way that
the user barely notices the improvements.

Web-services
A solution that uses different protocols and standards
with the objective of exchanging data between
applications.

https://en.wikipedia.org/wiki/Inference
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Training_data

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

24

Embedded systems

System designed to perform some dedicated functions,
typically with low resources, and sometimes located
remotely. Embedded Systems with updatable software or
firmware include a bootloader which is responsible for
verifying the integrity of the software or firmware image
on the device before loading it.

Containers / VMs
Software package that contains everything the software
needs to run. This includes the executable program as
well as system tools, libraries, and settings.

Orchestration and
CI/CD playbooks

Continuous Integration and Delivery: Continuous
Integration is the engineering practice of frequently
committing code in a shared repository. Continuous
Delivery is the practice to build the software in a way that
is always ready to run in their target environment

Serverless
Applications where the management and allocation of
servers and resources are completely managed by the
cloud provider

Cloud services (e.g.
device
provisioning)

Cloud computing: the on-demand availability of computer
system resources, especially data storage and
computing power, without direct active management by
the user.

Integrity
verification
software

Software that protects against unexpected or
unauthorised changes in data once it was created by an
authorised source.

Data

Reporting data/ Big
data analytics

These data inform of critical elements concerning an
organisation's performance to improve different aspects.

Production Data
Without these data it would not be possible to complete
daily business tasks and processes.

Backup Data
Security copy of data files and folders to enable recovery
in the event of data loss.

Configuration Data Data needed to set up the system correctly

Operation Data Real data with which the software works

Code repository
Platform that stores and centralizes all the developed
source code. Allows the development team to keep track
of versions.

Test Data
Data used to perform the different tests concerning
software, e.g. penetration testing, black box testing, etc.

Asset repository
This repository provides a single, centralised database to
store and track organisational assets.

Training data

Data used to train Artificial Intelligence/Machine Learning
algorithms. Training involves the learning phase where
algorithms can make predictions based on the training
data that been fed to them.

Maintenance Updates

Over-the-Air (OTA)
update mechanism

Mechanism to update hardware remotely with new
settings, software or firmware.

Firmware
Software that sets the lowest-level logic to control a
device‘s electronic circuits.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

25

Software
Minor software modifications deployed that provide
security or functionality error fix.

Back-end servers
Software component that provide functionality for other
programs such as sharing data or resources

Support/ Ticketing
system

Software designed to organise and distribute incoming
customer service requests.

Monitoring tools /
SIEM

Monitoring tools used to continuously keep track of the
status of the system in use, in order to ensure the earliest
warning of failures, defects or problems, and to improve
them. Monitoring tools span from servers, networks, and
databases, to security, performance, end-devices and
applications.

Threat Intelligence
services

Threat Intelligence Services generate, aggregate and
distribute real-time feeds of intelligence data generated
and derived from the use of IoT.

Documentation

Source Code

Written text or illustration that accompanies Software and
explain how operates or how to use it. Different types of
documentation exist such as that for source code,
change management, etc.

Change management

Disaster recovery

Third-party
documentation

Data loss
prevention

The practice used by organisations to detect and prevent
breaches, leakages, or the undesired destruction of
sensitive data. Also used for regulatory compliance. An
example would a ransomware attack. DLP focuses on
preventing illicit transfers of data outside of the
organisation.

Version control
Management of the different changes made to the
elements of a product or its configuration.

Software
components

Code

Open-source code
Software readily available for users to build and distribute
new solutions.

COTS

Commercial-off-the-shelf: software and services are built
and delivered usually from a third party vendor. COTS
can be purchased, leased or even licensed to the general
public.

Own software
Software developed and maintained by the own
company.

Third-party libraries
Software not developed or maintained by the company,
but they are part of an application or system of the
company

APIs

Own Application Programing Interface: a set of subroutine
definitions, communication protocols, and tools offered
for one library to be used by other software Third-party

PKI
Technology that is used for authenticating users and
devices in the IoT ecosystem.

Communication
protocols

Formal descriptions of digital message formats and rules
that allow two or more entities of a communications
system to transmit information.

https://test.imperva.com/data-security/compliance-101/sensitive-data/
https://test.imperva.com/data-security/threatglossary/ransomware/

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

26

Identity and Access
Management

A framework of business processes, policies and
technologies that facilitates management access control.

Algorithms/Logic
A set of unambiguous specifications for performing
calculation, data processing, automated reasoning, and
other tasks.

Database
management
systems

Relational (SQL)
Software packages designed to define, manipulate,
retrieve and manage data in a database

Non-relational (NoSQL)

SDLC
infrastructure

Physical assets
Any type of tangible asset that is used to support the
SDLC process (e.g. computers, wires, etc).

Support servicers

Network

Intangible assets in the form of internal or external
services that support the operation of the SDLC
infrastructure.

Utilities

Cloud

Third-party services

Development
environment and
networks

Environment and networks used for the development of
the IoT applications.

Testing
environment and
networks

Environment and networks used for testing purposes of
the IoT applications.

Integration
environment and
networks

Environment and networks used for the integration of the
IoT applications.

3.2 THREAT TAXONOMY

The complexity and large scale of the IoT SDLC process combined with the inherent

particularities and challenges of IoT systems and services exacerbate relevant cybersecurity

challenges. There exist a series of threats that might affect the IoT SDLC, while it should also

be noted that these threats come with a varying level of potential impact if they materialize. In

accordance with the ENISA Threat Taxonomy43, Figure 4 depicts the main threats related to the

IoT SDLC. Further details are provided in Table 2, where a detailed description of all threats is

listed, alongside the list of assets (as per the asset taxonomy) that each threat may affect.

43 See ENISA (2016) “ENISA Threat Taxonomy A tool for structuring threat information”:
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/enisa-threatlandscape/
etl2015/enisa-threat-taxonomy-a-tool-for-structuring-threat-information

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

27

Figure 4: Threat taxonomy

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

28

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

29

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

30

Table 2: Threat taxonomy and mapping to assets

Category Sub-Category Threat Description Assets Affected

Personnel

Insider Threat

Corporate
Espionage

Theft of data to gather critical and valuable
information, by an employee or by some other
company (competitors), throughout the
development lifecycle process, affecting the final
product, intellectual property, time to market, etc.

Software Component

Data

Human Factor

Software Development

SDLC infrastructure

Sabotage

Intentional unauthorised actions (non-fulfilment or
defective fulfilment of personal duties) aimed at
causing a disruption or damage during the
software development, to obstruct the process, to
affect the integrity of the software or to ultimately
compromise the objective of the software.

Data

Human factor

Software Design

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Fraudulent
activities

A team member or an attacker may use
confidential information or exploit system
vulnerabilities to carry out fraudulent activities
(theft of sensitive information, industrial
espionage, or extortion) that may affect the
integrity of the software or cause damages to third
parties.

Data

Human factor

Software Design

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Blackmailed staff

A member of the team is under duress from a
malicious third party to carry out certain actions
that could compromise the security of software in
exchange of not revealing embarrassing,
disgraceful or otherwise damaging information
about the employee. It is a form of extortion.

Human Factor

Disgruntled staff

A disgruntled employee may deliberately use his
or her privileges in order to seek revenge by
leaking sensitive information to competitors or
other companies that offer some kind of incentive
to the employee to compensate for this
dissatisfaction.

Human Factor

Corrupted staff

A corrupt employee may deliberately seek to
exploit his or her privileges in relation to corporate
resources to his or her own benefit, leveraging the
said resources for personal gain despite not being
dissatisfied with the situation at the organisation.

Human Factor

Teamwork Issues

Incompetent /
Inexperienced /
Demotivated
Staff

An incompetent/inexperience/demotivated may
pose a threat to the organisation due to
absentmindedness or to a lack of knowledge and
awareness of security, resulting in accidental
risks.

Human Factor

Issues in
communication/c
oordination

Lack of a proper communication between project
members, either internals or communications with
service providers, may lead to errors such as
misunderstandings, duplication of tasks,

Human Factor

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

31

undefined scope, lack of systems integration, use
of obsolete versions, etc.

Internal
Limitations

Absence of
personnel /
Limited
resources

A lack or unavailability of necessary personnel
(strike, unexpected events, disasters, or staff
turnover) may lead to an inability to ensure the
level of security required due to the excessive
workloads burdening other staff members and
preventing them from paying the necessary
attention to security throughout the process.

Human Factor

Hacktivism
The use of illegal
logical tools

A way of activism that uses and/or abuses
technology to spread ideas or to punish
organisations or people based on their beliefs.
This threat can be posed either by isolated
individuals or by organised professionals taking
advantage of an organisation's security flaws.

Data

Human factor

Software Design

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Outages

Loss of support
services

Business
software

Unavailability of business software required for
development of the software, failure of business
software, failure of the support services, or loss of
the license.

Data

Human factor

Software Development

Maintenance

SDLC infrastructure

Software components

Cloud (online
storage)

Unavailability, interruption or failure of online
storage on the cloud. Depending on the
communication, and on the time required to
recover, the importance of this threat ranges from
high to critical.

Software Deployment

SDLC infrastructure

Third-party
services (e.g.
API,
Communication
Brokers, Cloud)

The failure or malfunction of a service or support
that has been assigned to a third party (supplier),
thus creating a dependency, can affect the whole
product lifecycle, from the development process
(e.g. drawing the project out) to the release of the
product in the market (e.g. unavailability of the
service).

Data

Human Factor

SDLC infrastructure

Software components

Software Deployment

Maintenance

Third party
documentation

Threat of unavailability documents of private
company archives, often a failure of document
management control affects the specifications of
the software, information leakage / sharing
caused by inadequate security measures of the
third-party.

Data

Human Factor

Software Design

SDLC infrastructure

Maintenance

Code
repositories

Unavailability of the code repositories, due to a
lack support of the repository, failure of the third
parties, failure of communications, etc.

Data

Software Development

SDLC infrastructure

Software components

Maintenance

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

32

Software
configuration
management

Unavailability of proper software configuration
management, unawareness of the correct version
of the code or modification of the code.

Data

Software Deployment

Software Components

Maintenance

Subcontracting
of development
services

Unavailability of subcontracting of development
services required for development process.
Unavailability of key personnel and their
competences, unavailability of the business
development, etc.

Data

Human Factor

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Utility outage

Power (Electricity
and Gas)

Interruption or failure in the supply of power
(electricity or gas), either intentional or accidental,
and the time required to recover. The importance
of this threat ranges from high to critical.

Human Factor

Data

SDLC infrastructure

Maintenance

UPS
(uninterruptible
power supply)

Interruption or failure in the UPS, either intentional
or accidental, and the time required to recover.
The importance of this threat ranges from high to
critical.

Human Factor

Data

SDLC infrastructure

Maintenance

Cooling

An interruption or failure in the cooling services
(air-conditioning in server room), either intentional
or accidental, may affect hardware support and
prevent access to project information (loss of
information, file deletion, etc.)

Human Factor

Data

SDLC infrastructure

Maintenance

Network outage
Communication
issues

A lack of communication links (wireless, mobile,
fixed network, internet) prevents information flows
due to problems with networks blocking file
updates, repository access, teamwork
communications, information exchanges, etc.

Human Factor

Data

SDLC infrastructure

Maintenance

Unintentional
Damages
(Accidental)

Unintentional
modifications

Source code

A member of the team unconsciously makes a
mistake in any of the tasks, causing an unwanted
modification of source code (and probably
damaging it).

Data

Software Components

Maintenance

Configuration
data

A member of the team unconsciously makes a
mistake in any of the tasks, causing an unwanted
modification of configuration files (and probably
damaging them).

Data

Maintenance

Test data

A member of the team unconsciously makes a
mistake in any of the tasks, causing an unwanted
modification of test reports (and probably
damaging them).

Data

Maintenance

Deployment data

The information about how to put the software
into production, or about how to launch the
system (start scripts) is quite sensitive. Errors
concerning these data could leave the software in
a vulnerable state (security measures not
activated, etc.)

Data

Software Deployment

Software Development

Software components

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

33

Documentation

A member of the team unconsciously makes a
mistake in any of the tasks, causing an unwanted
modification of project documentation (and
probably damaging it).

Human Factor

Data

Maintenance

Backup Data
Modification

An unexpected modification that affects the
backups could put at risk the system's operation
or even bring about a loss of the application in
case of a system failure.

Data

Maintenance

Perturbation of
environment

A change of the environmental work conditions
can cause the failure of results in the SDLC
process (testing results, maintenance and
operation environment, etc.)

Data

Software Design

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Erroneous use or
administration of
devices and
systems

Development
environment

Information leakage / sharing / damage or system
management misuse that could affect the
programming process and tools during the
development phase.

Data

Software Development

SDLC infrastructure

Software Components

Maintenance

Integration
environment

Information leakage / sharing / damage or system
management misuse that could affect the process
and tools when all software components are put
together and tested as a whole.

Data

Software Design

Software Development

SDLC infrastructure

Software components

Software Deployment

Testing
environment

Information leakage / sharing / damage or system
management misuse that could affect to the
validation process and tools (automated checks
or non-automated techniques) causing failed
tests, or false test results.

Data

Software Development

SDLC infrastructure

Software components

Software Deployment

Production
environment

Information leakage / sharing / damage or system
management misuse that could modify the current
conditions of the software (such as configuration)
during its production phase.

Data

Software Development

Maintenance

SDLC infrastructure

Software Components

Software Deployment

Damage caused
by a 3rd party

Discontinued
third-party
products
/services for
development

A failure on the part of a service provider on
which the project depends puts at risk the proper
operation of the software development process
because the corresponding dependency (service
or product) will no longer be provided.

Software Components

SDLC infrastructure

Maintenance

Information
leakage

Data disclosure

A sensitive information exposure occurs when,
due to an accidental event, an application or
program does not adequately protect information
such as passwords, payment info, or health data.
With this information, cybercriminals can make

Data

Software Components

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

34

fraudulent purchases, access a victim’s personal
accounts, or even blackmail someone.

Physical Attack

Sabotage

Internal
Intentional actions by internal people aimed at
causing a disruption or damage of the physical
components or facilities

Data

Human factor

Software Design

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

External
Intentional actions by external people aimed at
causing a disruption or damage of the physical
components or facilities

Data

Human factor

Software Design

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Vandalism and
theft

Theft of
equipment
(hardware)

Theft of information or IT assets that support the
development process

Data

SDLC infrastructure

Software Components

Physical damage
to equipment

Incidents such device thefts, bomb attacks,
vandalism or sabotage could damage the
equipment

Software Deployment

SDLC infrastructure

Maintenance

Modification of
equipment/
devices

Intentional attacks on development process
support (servers, laptops, mobile) of development
software, dependencies thereof, and on IoT
devices that are closer to the physical process.

Software Deployment

SDLC infrastructure

Software Development

Maintenance

Theft of
documents

Theft of documents from private company
archives, often for the purpose of re-sale or to
obtain personal benefits.

Data

Maintenance

Theft of backups
Stealing media devices on which copies of
essential information are kept.

Data

Maintenance

Attacks with
physical access

Side-channel
attacks

Attack based on the collection of information
about what the system does when performing
cryptographic operations to reverse-engineer it
instead of on cryptographic weaknesses.

Data

SDLC infrastructure

Software components

Software Deployment

Maintenance

Radio Frequency
attacks

Theft or data tampering by an attacker leveraging
the vulnerabilities of Radio Frequency (RF)
communications in order to access facilities or
physical components.

Data

SDLC infrastructure

Software components

Software Deployment

Maintenance

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

35

Communication
layer attacks

Attacks that could involve the modification of
messages, identity theft, repudiation, data
analysis, etc. when a communication among
different entities is performed with the aim of
accessing facilities or physical components.

Data

SDLC infrastructure

Software components

Software Deployment

Maintenance

Forced Access

Unauthorised
physical access /
Unauthorised
entry to premises

Unapproved access to facilities that could be
leveraged for malicious actions.

Data

SDLC infrastructure

Software components

Software Deployment

Maintenance

Legal

Violation of rules
and regulations

Lack of
compliance with
applicable
regulations

Threat of financial or legal penalties or loss of
trust of customers and collaborators due to a
violation of applicable law or regulations.

Human Factor

Data

Breach of
legislation

Lack of
compliance with
applicable
legislative
framework

Lack of compliance with international standards
and Best Practices (e.g. BSA, ISO, CSA, NIST,
etc.) applied to the Software Development
Process introducing known failures in the system.

Human Factor

Data

Contract
Requirements

Improper /
Incomplete use
of definition

The lack of specific security clauses in provider
contracts means that there may not be
contractual obligations at service or product level.

Human Factor

Data

Software Components

Maintenance

Failures/
Malfunctions

Software
vulnerabilities

Software bugs
Flaws or errors in the software programming or
system that produce an incorrect or unexpected
operation or result.

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Configuration
exploits

Due to a failure in the configuration system, an
attacker can leverage the vulnerability to launch
an attack on the system.

Software Development

SDLC infrastructure

Software Components

Software Deployment

Maintenance

Data

Outdated
software

Software that is not up to date may trigger severe
risks for a software solution. Potential issues may
arise from vulnerabilities that are present in the
software dependencies, or legacy systems.

SDLC infrastructure

Software Components

Software Deployment

Maintenance

Software Development

Insecure
communication
protocols

Use of insecure communication protocols that an
attacker could leverage in order to cause a
malfunction of the system or capture sensitive
information.

Data

SDLC infrastructure

Software components

Software Deployment

Maintenance

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

36

Legacy software
Software that is obsolete and presents a
vulnerability due to a lack of support, updates or
patches.

Software Components

Software Deployment

Maintenance

Software Development

SDLC infrastructure

SDLC process
failures

Failure of
development
environment,
tools or
processes

These kind of failures can stop the development
process, or delay it, or bring about a loss of
control over it.

Human Factor

Software Design

Software Development

Software Deployment

Maintenance

Failure of testing
environment,
tools or
processes

Issues in the testing environment could affect the
veracity of testing results (not tested correctly, not
tested uniformly, etc.), or may make it impossible
to carry out some tests, stopping or delaying the
development process.

Data

Software Development

SDLC infrastructure

Software components

Software Deployment

Failure of
integration
environment,
tools or
processes

The integration phase is critical, since all software
pieces are put together to ensure they work as
expected. If potential issues arise, they may result
in software integration issues or bad results in
integration testing.

Software Development

Data

Software Components

SDLC infrastructure

Software Deployment

Failure of
production
environment,
tools or
processes

The production environment is critical because it
is the real scenario to work with. Failures can
affect the availability of the whole solution, as well
as the way to measure or control how software
behaves. It also may result in a leakage of
sensitive information due to errors.

Software Development

Data

Software Components

Software Deployment

SDLC infrastructure

False Negatives
The ratio of false negatives in the security tools is
too high to rely on the results.

Data

SDLC infrastructure

Software Development

Software Deployment

Complexity
The security tools are too complex, leading to
their incorrect use and results that are difficult to
interpret.

Software Development

Software Design

SDLC infrastructure

Software Deployment

Incomplete
Analysis

The tool does not analyse the full project or the
tool is used when the software is not finished,
leaving parts of the software unanalysed from the
point of view of security.

Data

SDLC infrastructure

Software Development

Software Deployment

Noisy Results

Either the means by which the results are
presented or the high volume of false positives
make the results hard to process, causing
vulnerabilities that may go unnoticed.

Data

SDLC infrastructure

Software Development

Software Deployment

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

37

Failure of
software design
environments,
tools or
processes

In the design phase, security requirements are
included in the solution as design features.
Potential failures at this point can lead many
vulnerabilities to go unnoticed during following
stages of development.

Data

SDLC infrastructure

Maintenance

Software Design

Software Development

Software components

Software Deployment

Inadequate
requirements

Establishing security requirements that are not
appropriate for the solution or for the development
process can lead to the emergence of
vulnerabilities.

Software Development

Data

Software Design

Software Components

Software Deployment

Third party
failures

Internal service
provider

A failure of a service such as the programming of
a code part or component design that has been
developed by IT departments/service providers
within an organisation

Software Design

SDLC infrastructure

Software components

Software Deployment

Maintenance

Cloud service
provider

A failure of a service that is supported by a cloud
provider, such as an application through the
Internet (SaaS).

SDLC infrastructure

Software Components

Software Deployment

Maintenance

Other provider
A failure or unexpected result of any part that has
been outsourced and whose operation has an
impact on software development.

SDLC infrastructure

Software Components

Software Deployment

Maintenance

Third-party
libraries

It is necessary to adopt risk management for
these assets. These risks must be mitigated to
prevent various types of threats from being
executed.

SDLC infrastructure

Software Components

Software Deployment

Maintenance

Failure to meet
contractual
requirements (e.g.
software
maintenance)

Software
providers

Contractual requirements for software providers
can manage many different aspects, such as how
software is developed, when it has to be
delivered, security in workstations of developers,
how to deliver the software, security maturity of
the software, maintenance of the software, etc. In
case of failure, it may have severe consequences,
such as intellectual property loss, inability to
provide software when needed, immature security
for the software delivered, etc.

Human Factor

Software Design

SDLC infrastructure

Software components

Maintenance

Component
suppliers

Many different aspects can be included in the
contract, and they depend on the component that
they provide. SDLC may be impacted if
components are not needed, stopping or delaying
the process, or not providing the functionalities
that they need, or lacking maintenance when it is
required (SLAs)

Human Factor

Software components

SDLC infrastructure

Software Deployment

Maintenance

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

38

Other 3rd parties

Security is an aspect to consider globally in an
organisation, and any organisation provider may
result in security issues such as an information
leakage or damage to information integrity, if
security clauses of the contract are not correctly
followed (for instance, cleaning service staff may
expose sensitive information when they manage
an organisation's residues)

Human Factor

Software Deployment

Software Components

Maintenance

SDLC infrastructure

Maintenance
failures

Insecure
software updates

New updates (new software versions) need to be
tested thoroughly to ensure that they not impact
the properties of the software. Insecure updates
can make a software that was safe in the previous
version vulnerable.

Software Deployment

Maintenance

Software Components

Insecure
software update
process

The process to update software is not secure
enough (hardcoded credentials for maintenance,
backdoors, integrity is not checked), allowing
potential attackers to compromise the software by
abusing the updating process.

Software Deployment

Maintenance

Nefarious
activity/ Abuse

Abuse of personal
data

Data
Manipulation

In this case, the objective is to manipulate the
data in order to modify data, cause the failure of
the software, or acquire monetary gains. By
accessing the operation data of the system, an
attacker may modify them to alter the operation of
the application for malicious purposes

Data

Abuse of
authorisation

Improper /
Incomplete use
/abuse access to
IT systems

Abuse of authorised access systems that support
the infrastructure, making it possible to modify the
version of the software and the tools during the
process of software,

Software Deployment

SDLC infrastructure

Software Development

Data

Maintenance

Unauthorised
installation of
software/
hardware

Threat of unauthorised manipulation of hardware
and software that can be used to modify source
code for malicious purposes, posing threats such
as bomb injections, backdoor generation, or the
destruction of source code.

Software Deployment

Software Development

SDLC infrastructure

Software components

Maintenance

Unauthorised
use of devices
and systems

An unauthorised modification of configuration
data could cause the system to work incorrectly or
the security measures implemented may not act
correctly, allowing attacks against the system.

Data

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Unauthorised
access to data

Unauthorised modification of code or data,
attacking its integrity. In this case, it can result in
the manipulation of information, unauthorised
access to confidential information, and access to
source code.

Data

Software Development

Software components

Software
exploitation

Source code
exploits (e.g.
third-party
libraries
exploitation)

Unauthorised modification of source code for
malicious purposes such as bomb injections,
backdoor generation, or the destruction of source
code.

Software Components

Software Development

Data

Maintenance

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

39

Configuration
exploits

The default configuration is vulnerable, containing
weak/default passwords, software bugs, and
configuration errors. This threat is usually
connected to others, like exploit kits

Software Components

Software Deployment

Maintenance

Data

Testing exploits

Threat leveraging the use of default configuration
of the testing environment, with default
passwords, software bugs, and configuration
errors.

Software Deployment

SDLC infrastructure

Software Components

Production
exploits

Threats leveraging the use of outdated software
versions, bugs, improper configurations, zero-day
vulnerabilities or specific software components,
such as weak cryptographic algorithms or
vulnerable open source libraries

Software Deployment

SDLC infrastructure

Maintenance

Software Components

Advanced
Persistent Threat

In Advanced Persistent Threat (APT) attacks,
eavesdropping and information gathering
comprise one of the first stages carried out in
order to identify weak spots and potential
entry/attack points

Data

Human Factor

Software Design

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Malware (virus,
Trojans,
ransomware,
exploit kits)

Exploit Kit Code designed to take advantage of a
vulnerability in order to gain access to a system.
This threat is difficult to detect and during the
software development process its impact ranges
from high to crucial, depending on the assets
affected

Software Deployment

SDLC infrastructure

Software components

Maintenance

Manipulation of
SDLC
infrastructure

Manipulation of
development
environment,
tools or
processes

Threat of unauthorised manipulation of
development environment, tools or processes to
intentionally manipulate the information systems
or review process of the development to cover
other nefarious activities (false results,
modification of the information, information
integrity loss, no testing updates), or to obtain
information about the software under
development (intellectual property, etc.)

Software Development

Maintenance

SDLC infrastructure

Manipulation of
testing
environment,
tools or
processes

Unauthorised modification of testing elements
(environment, processes, tools) with malicious
intentions (modifying test results, obtaining
intellectual property or other sensitive information,
etc.). For instance, an attacker could modify the
test data in order to allow a system that has not
passed the security tests to be accepted and
continue to the production phase with security
flaws

Software Development

Maintenance

Software Deployment

SDLC infrastructure

Manipulation of
integration
environment,
tools or
processes

Threats that aim to modify the integration
environment to obtain intellectual property (the
whole solution), or modify the results of the tests
when all software components are put together.

Software Development

Maintenance

Software Deployment

SDLC infrastructure

Manipulation of
production
environment,
tools or
processes

Production environment is critical because it is the
real scenario to work with. Malicious modifications
can affect the availability of the IoT solution, as
well as the way to measure or control how
software behaves (try to cover other malicious
activities). It may also have severe effects, for

Software Development

Maintenance

Software Deployment

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

40

instance providing access to sensitive information
(personal data, code, configuration data,
operation data, etc.), or modifying it.

SDLC infrastructure

Manipulation of
hardware

Unauthorised manipulation of hardware elements
of the solution, affecting the integrity of hardware
elements (which are the basis of the rest of
technologies: infrastructure technologies, support
systems, etc.)

Maintenance

Software Deployment

SDLC infrastructure

Manipulation of
software update
environment,
tools or
processes

Threat of unauthorised manipulation of software
update environment Patched the lack of a formal
update management procedure entails that the
urgency of fixing an application or system may
bring about errors that cause vulnerabilities in the
system.

Maintenance

Software Deployment

SDLC infrastructure

Manipulation of
data repositories

Threat of manipulation of data repositories with
the objective of manipulating source code for
malicious purposes such as bomb injections,
backdoor generation, or the destruction of source
code.

Data

Maintenance

Software components

Denial of Service

SDLC
infrastructure

Understanding IT infrastructure as the set of
technologies that provide the needed environment
(networks, operating systems, etc.) for the
systems and applications, these threats aim to
make them unavailable, affecting all technologies
that need them. It can have severe
consequences.

Maintenance

Software Development

SDLC infrastructure

SDLC support
systems

Threats that aim to compromise the availability of
all type of systems and middleware that sustain
the software development process, stopping or
delaying the development process.

Maintenance

SDLC infrastructure

Software components

Software Deployment

Development/
testing/
integration/
production
environments

When an environment is not available due to
malicious activities, the development process may
be stopped or delayed (tests cannot be
performed, etc.). In the case of the production
environment, the availability of the IoT solution
may be partially or completely impacted.

Maintenance

Software Deployment

Software Development

SDLC infrastructure

Manipulation of
information

Source code (e.g.
tampering, logic
bombs, etc.)

Unauthorised modification of source code for
malicious purposes such as bomb injections,
backdoor generation, or the destruction of source
code.

Software Components

Maintenance

Data

Configuration
data

The unauthorised modification of this type of data
may result in an alteration of software
parameters, which can affect the security of the
solution (disabling security measures, etc.).

Data

Software Deployment

Maintenance

Test data

Threat of intentional manipulation of test data with
the objective to modify the test data in order to
allow a system that has not passed the security
tests to be accepted and continue to the
production phase with security flaws.

Data

Maintenance

Deployment data

Threat of intentional manipulation of deployment
data. A lack of an adequate testing environment
affects the validity of the security tests, since the
environment should be as similar to production as
possible.

Data

Software Deployment

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

41

Backup Data
Modification

Not adequately protecting backups could allow an
attacker to access and modify or destroy data,
compromising the system's operation in the event
of a failure if access to the backups is required.

Data

Maintenance

Software Deployment

Poisoning
training / testing
data

Training data tampering could cause a diversion
from expected data, highly impacting the final
results of the SDLC process.

Data

Software Development

Software Deployment

Maintenance

Social engineering

Phishing
(whaling, vishing,
spearphishing,
etc.)

Threat of an e-mail fraud method in which the
perpetrator sends out legitimate-looking email in
an attempt to gather personal and financial
information from recipients. Typically, the
messages appear to come from well-known and
trustworthy Web sites. The main object in this
case it is obtain information of the member of the
team development and get identify, passwords
and could be modification of the source code

Human Factor

Reverse social
engineering

A reverse social engineering attack is a person-
to-person attack in which an attacker convinces
the victim that he/she has or will have a problem,
and the attacker is the key to solve it.

Human Factor

Baiting

It is a technique to drive the victim into a trap by
resorting to his/her curiosity and interest (like
putting rouge USBs on the floor of a parking
area).

Human Factor

Identity theft
Identity Fraud/
Account

This threat aims to steal the identity of a
legitimate user of the system to perform actions
on behalf of the original user, or to access
information that the user can access.

Human Factor

Damage/ Loss Disclosure

Source code
disclosure

Source code is one of the most important assets
for a software development project. It is an
investment of the organisation in creating
technology. A loss of confidentiality regarding this
asset may have severe consequences for the
organisation due to an intellectual property loss,
and potential attackers can discover security
holes while reviewing code.

Software Components

Maintenance

Data

Configuration
data disclosure

Configuration data is an important type of data
where many parameters of the software are
defined, as well as data about connections to
other systems.

Data

Maintenance

Software Deployment

Testing data
disclosure

Test data contain sensitive information about the
system and its status (current and past), since
these data are composed of results of the
different tests done, including security tests. This
information is confidential, and an unauthorised
access may have severe consequences for the
software, as well as for the organisation.

Data

SDLC infrastructure

Production data
disclosure

Production data is an important asset that is quite
valuable for the organisation. If these data are
exposed in any way, sensitive information can be
compromised (personal information, intellectual
property).

Data

Software Deployment

Maintenance

Third-Party

Third-party components that are part of the
solution are as important as your own. The
information they hold may be accessed by
unauthorised individuals if the third party does not
observe due diligence.

Data

SDLC infrastructure

Software Components

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

42

Software Deployment

Maintenance

Backup Data
An unauthorised access to backup data may
expose sensitive information, intellectual property,
etc.

Data

Software Deployment

Maintenance

Loss/leakage of
information

Source code

Source code is one of the most important assets
for a software development project, it is an
investment of the organisation for the creation of
technology. For proprietary software, a loss of
confidentiality regarding this asset may have
severe consequences for the organisation due to
an intellectual property loss. Moreover, potential
attackers may discover security holes by
reviewing code. In the case of a loss of source
code, the company will lose efforts and resources.
It would need new resources (equal or more than
in the previous situation) to be at the same point
as it was.

Data

Maintenance

Software Components

Configuration
data

Configuration data is an important type of data
where many parameters of the software are
defined, as well as data about connections to
other systems. A loss of these data may affect
internal system connections or may cause any
other issue affecting the availability of the
solution.

Data

Maintenance

Software Deployment

Test data

Test data contain sensitive information about the
system and its status (current and pasts), as
these data are composed of results of the
different tests done, including security tests. This
information is confidential and an unauthorised
access may have severe consequences for the
software, as well as for the organisation. Its loss
represents a loss of the technological memory of
the organisation.

Data

SDLC infrastructure

Production data

Production data is an important asset that is quite
valuable for the organisation. If these data are
exposed in any way, sensitive information may be
compromised (personal information, intellectual
property). A loss of this kind of data may have a
severe impact on the daily operations of the
organisation, and possibly make it difficult to
continue with regular operations.

Data

Software Deployment

Maintenance

Documentation

Documentation is a valuable asset that contains
information about processes, software, designs,
etc. In general, private information can have
negative consequences for the organisation if
these data are accessed by unauthorised parties.
A loss of documentation or a failure to document
changes to it represents a loss of knowledge for
the organisation.

Software Design

Software Development

SDLC infrastructure

Software components

Software Deployment

Maintenance

Backup Data

Backup data are as critical as operation data,
since it is the main means to restore operations in
the event of an issue. If these data were leaked,
the impact might be even greater than that of a
leakage of operation data, since it may also entail
the leakage of all history data.

Data

Software Deployment

Maintenance

Third-Party

A security breach in a service provider on which
the project depends exposes sensitive information
about its own system. This endangers sensitive
data, such as data about its operation, personal

Data

SDLC infrastructure

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

43

data of users, test reports, intellectual property,
etc.

Software Components

Software Deployment

Maintenance

Training data

Training all personnel is essential to ensure that
the development process is addressed in a
correct manner. A data modification or leakage
could be leveraged by an attacker to cause an
interruption of the SDLC process or to obtain
sensitive information about security to perform
reverse engineering.

Data

Software Design

Software Development

Software components

Software Deployment

Maintenance

3.3 EXAMPLES OF ATTACK SCENARIOS

The different cases presented here are examples of potential scenarios that can affect IoT

software development. Taking into account the overall picture of IoT applications previously

discussed (embedded devices, communications and cloud services), each scenario focuses on

one of these three elements. These use cases show a high-level overview of different attacks,

whereby it should be clarified that they serve only as indicative illustrative cases.

3.3.1 Insecure Credentials in Embedded Devices

One of the most critical issues in relation to IoT solutions is the use of default or insecure

credentials. Many such solutions impose hardcoded passwords that cannot or do not need to be

changed, or do not include mechanisms to ensure the use of secure authentication.

This means that oftentimes a user lacking sufficient awareness of security may choose to use

default credentials or create weak ones on their IoT solutions simply because they are easier to

remember. Even when there is a certain level of awareness, traditional restrictions (such as

password length restrictions or character use impositions) often lead to exasperation or

annoyance on the part of users, who opt to use insecure passwords to overcome these abrasive

burdens.

In turn, an attacker might be able to scan the exposed devices using resources like Shodan and

other tools (e.g. insecam.org or online databases containing exposed or default credentials to

different solutions). The attacker would eventually be able to determine, by means of testing, if

the solution lacks a password or uses a default or weak one, thus taking control of the device to

gain further privileges and, ultimately, use it for malicious purposes, such as creating botnets

(one famous example would be Mirai). These botnets are often used to launch Distributed

Denial of Service (DDoS) and cryptojacking attacks on other networks, among others.

Such attacks can be prevented by means of different measures throughout the SDLC process,

and essentially entails ensuring that such weak of guessable credentials cannot be used in the

solution. For instance, it should be impossible to preserve default credentials after initialization

of the IoT product, and users should be provided with guidelines on how to create secure ones.

When it comes to creating safe passwords, first of all, it is necessary to use strong

authentication mechanisms (for example, based on challenge-response authentication, with an

SSH signature) whenever possible. Additionally, it is also important to ensure that the

authentication mechanism prevents users from creating weak credentials (such as keywalk

passwords, that is, passwords based on adjacent keyboard keys, e.g. ‘qwertyuiop’, or obvious

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

44

ones, like ‘Aa12345!’). There are plenty of international authorities44 that have created

guidelines for this purpose, but essentially, users should be given freedom to be creative and

create custom passwords that are both secure and user-friendly, without too many format

restrictions.

Online databases of exposed or default credentials45 are a good resource to avoid the use of

weak authentication mechanisms. This would hinder the malicious actions of the attacker, since

the tools available would be less effective to guess weak or default passwords. Another

recommendation is to implement security mechanisms like multiple-factor authentication during

the SDLC or mechanisms forcing to change or set up a new password before using the device

for the first time.

On a similar note, in order to address publicly exposed services and harden the available

services, it would be necessary to reduce service to the minimum and remove all unnecessary

functions/services/libraries.

Figure 5: Attack 1 – Insecure Credentials in Embedded Devices

44 See https://pages.nist.gov/800-63-3/sp800-63b.html
45 For instance, see haveibeenpwned.com. This database includes API to check if a password has been compromised during
a leak, so that during the sign-up or password change processes, it is possible to check, securely, if the password created
by the user is publicly available or too common/weak.

https://pages.nist.gov/800-63-3/sp800-63b.html

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

45

Table 3: Insecure Credentials in Embedded Devices

Threats Assets Affected

Personnel: Insider threat; Incompetent / Inexperienced /
Demotivated Staff; Absence of personnel / Limited
resources.

 Software Component
 Data
 Software Development Tools
 Software Deployment
 Maintenance
 Human Factor

Unintentional damages: Unintentional modifications;
Erroneous use or administration of devices and systems.

 Software Development Tools
 Data
 Software Components
 Software Deployment
 Human Factor
 Maintenance

Failure / Malfunctions: SDLC infrastructure failures;
Maintenance failures.

 Software Development Tools
 Data
 Software Components
 Software Deployment
 Human Factor

Nefarious activity / abuse: Manipulation of SDLC
infrastructure; Manipulation of information.

 Software Development Tools
 Maintenance
 Data
 Software Deployment
 Software Components

Prevention actions during SDLC phases

 Requirements: Make secure device and user authentication a formal security requirement.

 Software Design: Include a mature authentication mechanism, and perform threat modelling as a security
exercise to detect potential issues.

 Development/Implementations: Build/implement the secure authentication design appropriately.

 Testing & Acceptance: Test the software to detect potential issues and assess the results from the point of view
of security.

 Deployment & Integration: Ensure configuration errors or mistakes (software, infrastructure, and third-party
services) have been fixed to prevent deployment failures.

3.3.2 Lack of Flexibility to Secure Communications

In this scenario, the security issue arises in relation to the use of rigid communication protocols

and the software components that provide this functionality. This scenario especially affects IoT

interfaces, where the software uses the communication functionalities to exchange information

with other elements. These interfaces are mostly software-based, where the protocol and its

corresponding options are used by the software.

This issue arises in relation to the software development process, since flexibility is designed,

implemented and configured during the creation of technology. Depending on this, the operation

mode of the software may vary in the maintenance phase. In this regard, flexibility is a software

decision that is present in the whole lifecycle of the software development.

When it comes to real life, the problem of this scenario would materialise if an insufficiently

flexible communication protocol prevents the user from applying additional security measures to

communications or from changing to another new protocol that increases the security. Such an

incompatibility could cause a security gap in the solution, rendering it vulnerable.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

46

An attacker may detect this lack of security and try to compromise the communications,

because if the type of communication used is obsolete, it will no longer be appropriate for the

functionality of the system, as it uses insecure ecosystem interfaces or insecure data transfers

and storage. The attacker might then use the insecure communication protocol in combination

with different types of attacks (man-in-the-middle attacks, leakage of sensitive information,

identity theft, etc.).

Ultimately, the objective of the malicious user is to gain further privileges and to obtain sensitive

information such as personal data, credit card information, authentication credentials, etc. This

issue can be easily prevented by assessing and observing the necessary level of flexibility

throughout the SDLC, making it a requirement for the solution.

Figure 6: Attack 2 – Lack of Flexibility to Secure Communications

Table 4: Lack of Flexibility to Secure Communications

Threats Assets Affected

Outage: Loss of support services; Communication issues

 Software Deployment
 Data
 Software Components
 Maintenance
 Human Factor

Unintentional damages: Unintentional modifications;
Erroneous use or administration of devices and systems;
Damage caused by a third party

 Software Development Tools
 Data
 Software Components
 Software Deployment
 Human Factor
 Maintenance

Legal: Contract requirements

 Human Factor
 Data
 Software Components
 Maintenance

Failure / Malfunctions: Third party failures; Failure to meet
contractual requirements; Maintenance failures

 Software Components
 Software Deployment
 Maintenance
 Human Factor

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

47

Prevention actions during SDLC phases

 Requirements: Establish the flexibility of software communications as a requirement.

 Software Design: Perform a good design of the solution, and perform threat modelling as a security review to
detect potential issues.

 Development/Implementations: Choose a secure library, perform a secure implementation of the functionality,
and use peer code reviews to identify potential problems.

 Testing & Acceptance: Use Dynamic Application Security Testing - DAST (see Annex D) to detect insecure
communications.

 Deployment & Integration: Perform hardening activities.

 Maintenance & Disposal: If a communication mechanism is secured during deployment but, later on, it proves
to be vulnerable, the lack of flexibility makes it impossible to solve this issue easily. This issue can be
addressed with flexibility to secure communication by patches / software updates.

3.3.3 Insecure Software Dependencies in Cloud Services

As previously studied by ENISA46 cloud services are developed using software components

(dependencies) already available, to reduce development time. These components (usually

from third parties) are as important as the code developed by the project team (in terms of

security). They are usually software frameworks or libraries that provide common functionalities

to the software, of the same nature regardless of the business logic. If a dependency is

vulnerable and exposed on the Internet, there may be severe consequences. Successful

attacks47 based on outdated components are clear indicators that software dependencies

should be taken seriously.

Cloud services could be affected in a similar way. For example, a developer or organisation may

not ensure that the dependencies used for a solution are not vulnerable. Even if they do verify

this, they may not keep track of new vulnerabilities detected over time in order to ensure prompt

patching. If an attacker is aware of this negligence, he or she may study the endpoints exposed

for such IoT solution. Analysing the underlying technologies of this endpoint (producing errors,

responses, etc.), the attacker may be able to detect dependencies and versions.

This means that, ultimately, simply by checking public vulnerabilities for the dependencies

exposed, the attacker may find one to exploit. If such a vulnerability is detected, the malicious

agent could then take advantage of it to launch, for example, an unrestricted file upload. The

impact of such attack is high, supposed code can be executed in the server context or on the

client side remotely, gaining access to the solution, and potentially obtaining sensitive or

confidential data.

This type of issue might have been easily prevented, had the organisation behind the solution

ensured the use of vulnerability-free components for development, and periodically reviewed

their security and applied patches and updates accordingly during the SDLC. The integrity of the

cloud service reflects the security of the components it comprises; one vulnerable dependency

may compromise the entire solution. In this context, it is important to implementing, for

important/critical business functionalities, end-to-end security mechanisms to mitigate this risk.

46 See https://www.enisa.europa.eu/news/enisa-news/towards-secure-convergence-of-cloud-and-iot
47 For instance, see the Equifax attack: https://www.netsparker.com/blog/web-security/how-equifax-data-breach-hack-
happened/

https://www.enisa.europa.eu/news/enisa-news/towards-secure-convergence-of-cloud-and-iot
https://www.netsparker.com/blog/web-security/how-equifax-data-breach-hack-happened/
https://www.netsparker.com/blog/web-security/how-equifax-data-breach-hack-happened/

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

48

Figure 7: Attack 3 – Insecure Software Dependencies in Cloud Services

Table 5: Insecure Software Dependencies in Cloud Services

Threats Assets Affected

Personnel: Incompetent / Inexperienced / Demotivated

Staff
 Human factor

Failure / Malfunctions: Outdated software; Third party

failures

 Software Components

 Software Deployment

 Maintenance

Prevention actions during SDLC phases

 Requirements: Establish software component dependency analysis against CVE feeds as a security
requirement.

 Development/Implementations: When selecting a FOSS dependency, assess if the community behind it takes
security seriously, and if it is big enough to ensure that the software is not discontinued.

 Testing & Acceptance: Perform software composition analyses to detect potential problems with software
components using SAST and DAST.

 Deployment & Integration: Test the different software artefacts of the cloud service, as well as their
corresponding dependencies. Do not put risky dependencies in the production environment when software is
going to be deployed, especially for software that is exposed to the Internet.

 Maintenance & Disposal: Monitor software dependencies periodically to detect new vulnerabilities prior to the
cloud services being deployed into the production environment.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

49

4. GOOD PRACTICES FOR
SECURE IOT SDLC

4.1 SECURITY CONSIDERATIONS

One of the most significant objectives of this document is to address the main security

considerations to take into account during the SDLC. During the execution of this study, a group of

experts was asked about the main challenges that they have to overcome in order to provide

greater security during IoT SDLC.

As a result of this consultation, a non-exhaustive list of security considerations is shown in Table 6.

Table 6: Security considerations

 Phases Security considerations Description

Analysis and
requirements

Security Requirements
Identification of security requirements according to data classification,
business requirements and legislative or standardisation objectives.

Hardware limitations
Alignment of security requirements with hardware limitations taking into
consideration additional aspects resulting from software requirements.

Protocols
Identification of the appropriate protocols for the solution, taking into
account its security features and the IoT solution’s security requirements.

Threat modelling
Application of threat modelling methodologies to identify the software
threats and the associated countermeasures to mitigate them.

Software design

Attack surface analysis
Identification of the IoT solution’s attack surface by taking into
consideration architecture aspects and utilising security user stories.

Secure design
Use / application of secure design patterns and principles. Security
architectures determine when and where to apply them.

Development /
Implementation

Frameworks
Use of known security guidelines to ease the implementation of security
controls during the software development process in order to enhance
security throughout the software lifecycle.

Libraries
Use of trusted security libraries when third-party resources are used,
ensuring that they are widely tested based on certain security criteria so as
to not compromise the software.

Built-in Security
OS as well as communication protocols come with built-in security
functions which can be leveraged to implement security features in
applications.

Guidelines
Use of the Secure Code guidelines and standards to alleviate from most
common application layer vulnerabilities.

External checks
Use of mechanisms to ensure that external libraries, tools or APIs used
during the SDLC phases such as development, deployment and
maintenance are proven, secure and updated.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

50

Testing / Acceptance

Design review
Activities aimed at verifying that the design used follows the specifications
defined during the design stage so that all security requirements are met

Code verification
Review of the code/quality of the code, preferably using automated tools in
order to look for errors introduced in the implementation phase.

Security requirement tests
Performance of security tests to ensure that software is free of known
vulnerabilities and to detect risks related to security requirements.

Penetration tests
Testing to identify potential vulnerabilities that could exist in IoT solutions
and could be exploited by an attacker.

Deployment /
Integration

Hardening environment
Secure the environment adding protection layers as a part of the in-depth
defence strategy in order to reduce the system’s attack surface.

Configuration and
Vulnerability management

Use of the control activities to guarantee an artefact’s quality, monitoring
and controlling changes made during the development lifecycle, and
identifying and repairing potential flaws affecting the software.

Change management
Definition of the procedure to document, monitor and track all changes that
may be made in the software development process

Maintenance /
Disposal

Incident management
Procedure to address the steps to be taken in order to ensure a normal
operation when a security issue takes place in the SDLC process.

Management of the end of
life-disposal

Secure management process of software components, artefacts and data
once the IoT solution is going to be retired from production.

Remote SW updates
Delivery management to push new versions of software in a remote
environment securely when it is necessary to apply an update, either to
add new functionalities or to mitigate vulnerabilities.

4.2 GOOD PRACTICES

Development of security measures for the IoT SDLC is one of the key objectives of this report.

The aim is to provide guidelines and recommendations for the target audience to assist in

countering and mitigating the threats that might impact IoT SDLC.

Firstly, extensive desktop research was conducted. Thorough analysis of relevant sources

(listed in Annex C) allowed distinguishing frequently mentioned topics in IoT SDLC security.

These topics were then aggregated to create an initial list of security domains. Final set of

domains was clarified and adapted based on the interviews conducted with the stakeholders

resulting in a list of 16 domains that provide a comprehensive view of the Secure IoT SDLC

landscape and indicate areas that require protection. To organise the domains in a logical

manner, they were classified into three main groups:

 People: security considerations that affect all stakeholders involved in the life cycle of

IoT solutions, from the software developers, to the end users of the product.

 Processes: secure development addresses security in the process of software

development when a software project is conceived, initiated, developed, and brought to

market.

 Technologies: technical measures and elements used in order to reduce vulnerabilities

and flaws during the software development process.

Measures included in this section provide a short description but further details and a mapping

with the threats and the corresponding references to back up each measure may be found in

Annex A.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

51

Figure 8: Security measures

4.2.1 People

4.2.1.1 Training and Awareness

 PE-01. Define a corporate strategy for specific security training: Ensure that all

personnel participate in awareness-raising activities and training, focusing on the
responsibilities of each role in applying security throughout the customised
development process.

 PE-02. Promote security awareness at all organisation levels: Ensure that the

entire organisation structure is made aware of the importance of safeguarding security
from the first stages of development, including decision-makers.

 PE-03. Assess the security skills to be updated: Assess the internal security

knowledge of the organisation to determine if the resources are aligned with the latest
security advances by means of activities, exams, certifications, etc.

 PE-04. Allocate resources to stay up to date with security topics: Stay up to date

with the latest industry trends as technology progresses in order to anticipate
increasing risks and be prepared to face any new threats that may arise.

4.2.1.2 Roles and Privileges

 PE-05. Establish security roles and privileges within the development project:

Define roles and responsibilities within the process so that the minimum sufficient level
of privilege for each duty can be identified and assigned to the relevant person.

 PE-06. Implement a separation of duties in the work team: Carry out a segregation

of duties in order to enable the collusion-resistant processes in SDLC and to minimise
the risk exposure of its processes.

 PE-07. Protect the process against privilege abuse: Implement security controls to

prevent the SLDC process from being compromised by any user with legitimate rights.

 PE-08. Allocate resources for process monitoring: Propose improvements to

ensure that a problem during SDLC process can not cause an interruption of business
continuity.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

52

 PE-09. Designate a physical security officer: As a part of SDLC process, the

physical facilities must be correctly protected and veiled by a security responsible.

4.2.1.3 Security Culture

 PE-10. Establish governance and controls for critical security know-how: Allocate

efforts to ensure that certain critical skills stay at company by means of promotions,
rewards, etc.

 PE-11. Consult with security experts to improve the process: Define a roadmap of

new actions to be carried out in order to improve or complete the development
process.

 PE-12. Designate a Security Champion figure: Centralize all security related

aspects security in a cross-functional profile. This figure must manage all security
topics during the SDLC.

 PE-13. Monitor and respond to the supporting security incidents: Security is not

absolute and risks can materialise. Allocate resources to ensure the correct
performance of SDLC support infrastructure.

4.2.2 Processes

4.2.2.1 Third-Party Management

 PR-01. Implement a Supply chain management plan: Ensure the integrity of the

supply chain with a plan containing security frameworks, risk management, contract
guidelines, etc.

 PR-02. Assess the software dependency process: Properly manage third parties

and dependencies by means of risk management and security requirements.

 PR-03. Test the Third Party process: Define a process to test the security of all third

party components prior to integration.

 PR-04. Verify Third Party software and services: Ensure that all third-party

components meet the security and contract requirements stipulated.

 PR-05. Disseminate a communication procedure to request external support:

Ensure that the whole organisation is informed of how to proceed if support is required
from third-parties.

 PR-06. Protect data against leakages: Specify confidentiality clauses in order to

prevent and avoid sensible data disclosures.

 PR-07. Contractually require controlling and monitoring the external services
through KPI's: Apply controls to guarantee that external stakeholders involved in the

SDLC process implement security into its processes.

4.2.2.2 Operations Management

 PR-08. Define an Incident Management Plan: Define a plan to manage

vulnerabilities and updates, including for third-party components, with the necessary
roles, responsibilities and activities to effectively respond to security incidents during
development.

 PR-09. Define a Change Management Plan: Define a plan to manage changes to the

development process with an informed view of the associated impact on the budget,
schedule, scope, communication and resources.

 PR-10. Implement Vulnerability and Patch Management: Define a plan to manage

vulnerabilities and updates during development, in a manner informed to the
associated impact upon the security assurances attainable by the SDLC outcome.

 PR-11. Implement Configuration Management: Adequately manage the integrity of

the system by ensuring that no unauthorised changes are made to the configuration.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

53

4.2.2.3 SDLC Methodology

 PR-12. Establish a Control Access and Authorisation Policy: Define a privilege-

based scheme to prevent unauthorised users from accessing restricted resources.

 PR-13. Automate the SDLC process: Automate processes supported by tested tools

to reduce costs, human efforts and errors.

 PR-14. Define Security Metrics: Define, implement, and monitor security metrics to

ensure fulfilment of the security requirements throughout lifecycle.

 PR-15. Adopt a Maturity model: Adopt a maturity model to improve security best

practices during software development.

 PR-16. Define and document the SDLC process: Define a guide identifying security

best practices and testing in each phase of SDLC. In addition, document a secure
development process with security requirements and development guides and update
it regularly based on the impact and criticality of newly discovered vulnerabilities.

4.2.2.4 Secure Deployment

 PR-17. Define a disposal strategy: Define a plan to dispose of the solution and all its

data and components adequately at the end of the lifecycle.

 PR-18. Establish process for SDLC vulnerabilities follow-up, monitoring and
updates: As threats progress, new vulnerabilities can affect the SDLC process.

Perform a procedure to be updated is crucial for so as not to incur emerging issues.

 PR-19. Implement a testing strategy: Leverage automatic tools to ensure that minor

errors are eliminated.

 PR-20. Define a secure deployment strategy: Establish a procedure for the

deployment steps and ensure all stakeholders follow it.

4.2.2.5 Security Design

 PR-21. Provide a secure framework: Define a framework to implement security by

design throughout the lifecycle of the solution.

 PR-22. Apply least privilege principle: Allocate only the user privileges required to

perform the necessary operations of each role in the solution.

 PR-23. Verify security controls: Verify that the security controls implemented are

reusable, sufficient, effective, reliable, audited, managed, and governed.

 PR-24. Perform a design review: Review the security of design periodically

throughout development to ensure requirements are met and identify the attack
surface.

 PR-25. Specify security requirements: Identify security requirements prior to

development to implement features that ensure regulatory compliance and avoid
vulnerabilities throughout the process.

 PR-26. Perform risk assessment: Identify risks throughout the software development

process, analysing the sources, data storage, applications or third parties.

 PR-27. Implement Threat Modelling: Identify security objectives and define a threat

model to implement countermeasures from the early stages of SDLC. Ensure that the
threat modelling process is notified of changes by integrating its communication
channel to that of the change management process.

 PR-28. Implement Data classification: Classify data based on their level of sensitivity

to establish protection measures accordingly.

 PR-29. Ensure that the hardware requirements derived from software
requirements are considered: Define and document requirements stemming from

hardware, namely requirements that the software needs to meet in order to be
consistently deployed on the targeted hardware.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

54

4.2.2.6 Internal Policies

 PR-30. Establish a communication plan for security measures: Develop a

communication plan to ensure that the whole organisation is informed about security
considerations: security policies, security procedures, new updates, etc.

 PR-31. Control the process against information disclosure: Implement security

controls to prevent any disclosure of information about security in the process that may
compromise it.

 PR-32. Verify and ensure the availability of updated security documents:

Periodically verify that the organisation’s security documentation is available, updated,
not tampered with, and strictly relevant to the matter of concern.

 PR-33. Plan an alternative for unavailability cases: Resources are not for all time

and unavailability times can come up, plan and have a second option is essential.

4.2.3 Technologies

4.2.3.1 Access Control

 TC-01. Implement authorisation: Implement access control in IoT systems (and other

underlying infrastructure) to ensure that the system verifies that users and applications
have the right permissions.

 TC-02. Secure storage of users' credentials: Ensure that user credentials of IoT

systems (and other underlying infrastructure) are protected from disclosure (e.g. using
hash functions to store passwords, centralising password storage, using hardware with
TPM, etc.).

 TC-03. Deploy physical protection for systems: Deploy security measures to

prevent physical damages (intentional and unintentional) to IoT systems (and other
underlying infrastructure).

 TC-04. Implement key management and authentication mechanisms (e.g. FIDO):

Ensure that SDLC systems' service credentials are stored securely (not accessible for
non-authorised parties) for those systems that need to use (e.g. using a secrets
vaults).

 TC-05. Control the physical access to the critical facilities: Information cannot be

accessible by any resource thus it must be protected against unauthorised access.

4.2.3.2 Third-Party Software

 TC-06. Use libraries and third-party components that are patched for latest
known vulnerabilities: Verify that software libraries and other frameworks to be

included in the software development project are patched for the latest known
vulnerabilities. Establish an upgrade roadmap for libraries and third-party components.
In the context of fully developed third-party software, ensure that the manufacturer
monitors databases (e.g. CVE) and notifies new vulnerabilities.

 TC-07. Use known secure frameworks with long-term support: During the design,

implement/develop and test the software under development, ensuring that the
foundation technologies of the software will be maintained in the long term.

4.2.3.3 Secure Communication

 TC-08. Use secure communication protocols: Ensure that communications cannot

be compromised by using encrypted channels, integrity protection and authenticated
connection to share information between IoT systems.

 TC-09. Use proven encryption techniques: Protect data using encryption algorithms

considered secure in any IoT systems and underlying infrastructure.

 TC-10. Implement secure web interfaces: Any web interface, including openness

(i.e. publicly accessible interface) or technologies of implementation (i.e.
HTTP/HTTPS/QUIC stack), in use for IoT systems should require security in order to
be used (authentication and authorisation check).

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

55

 TC-11. Secure session management: Due to the number of communications that

take place in the IoT systems, many sessions are established between them. It is
necessary to implement secure sessions in order to ensure security of
communications.

4.2.3.4 Secure Code

 TC-12. Implement secure coding practices: During the design, implement/develop

and test the software under development, ensuring that an authentication mechanism
referenced in globally accepted best practices is in place, that errors are handled
correctly, that all input/output data are validated before accepting it, and that queries
use parameterisation (or other equivalent security measure) to avoid code injections.

 TC-13. Provide audit capability: During the design, implement/develop and test the

software under development, ensuring that relevant security events are registered in
software logs.

 TC-14. Follow the principles of security by design and by default: During the

design, implement/develop and test the software under development, ensuring that
these principles are the foundation of the software.

 TC-15. Implement software development techniques: Choose software

development techniques (e.g. microservices) or architecture that produce clean and
maintainable code.

 TC-16. Verify production code: Ensure that the production environment is controlled

and resources are securely utilised.

 TC-17. Ensure security for patches and updates: Ensure that the SDLC model

always allows for modification/patching/update of software in a secure fashion (tested,
reviewed, etc.) before deploying any software change.

 TC-18. Implement measures against rogue code and fraud detection: Deploy the

countermeasures required in your SDLC process to detect potential rogue code in all
relevant phases.

 TC-19. Implement anti-tampering features: Deploy the countermeasures required in

your SDLC process to prevent unauthorised code modification in all steps of the
process.

4.2.3.5 Security Reviews

 TC-20. Apply secure code review: Ensure that, in SDLC, the source code is

reviewed in terms of security before accepting it.

 TC-21. Perform an attack surface analysis: Ensure that, in SDLC, the attack surface

is analysed and documented.

 TC-22. Perform IoT SDLC tests: Ensure that throughout the SDLC, at least a

penetration test is carried out when the software is complete. Additional testing should
also be considered based on functional needs and risk assessment.

 TC-23. Design a contingency plan: Ensure that the contingency plan is aligned with

software development process in order to avoid an interruption during the SDLC
phases.

 TC-24. Monitor requirements to ensure the SDLC success: Implement a system to

guarantee the requirement fulfilment.

4.2.3.6 Security of SDLC Infrastructure

 TC-25. Ensure secure logging and implement monitoring: Ensure that logs of IoT

systems and logs of the various tools used throughout the SDLC are stored in a secure
place, and that they are constantly monitored.

 TC-26. Implement physical detection systems: Implement a detection systems to

control the state of the data hosting facilities (temperature, fire, etc.) to protect the
SDLC support infrastructure against unavailability scenarios.

GOOD PRACTICES FOR SECURITY OF IOT
NOVEMBER 2019

56

 TC-27. Define a mitigation plan for physical damages: Ensure that the possible

risks that can affect and danger to the SDLC physical infrastructure are covered by a
countermeasure in an action plan.

 TC-28. Use whitelists for allowed applications: Control the applications that can be

used by providing an authorised list and denying the rest.

 TC-29. Audit the access to the SDLC infrastructure: Implement control systems

based on logs in order to manage and track all accesses to physical and logical
systems.

 TC-30. Implement an identification protocol in your facilities: Provide personal and

non-transferrable identification to all personnel, both internal and external.

4.2.3.7 Secure Implementation

 TC-31. Enforce the change of default settings: Ensure change of default settings at

first user interaction.

 TC-32. Use substantiated underlying components: Restrict component

customizations in order to avoid loss of security functionalities.

 TC-33. Provide secure configuration options for end users: Ensure that end users

have options to continuously improve security through the solution’s settings.

 TC-34. Implement interoperability open standards: Implement interoperability open

standards (e.g. OCF) to enhance secure integration processes.

 TC-35. Enable devices to advertise their access and network functionality: By

enabling devices to advertise their intended and supported functionality, the threat
surface can be significantly reduced. An indicative practical example involves the use
of IETF RFC 8520 on Manufacturer Usage Description Specification48.

48 See https://www.rfc-editor.org/info/rfc8520, March 2019

https://www.rfc-editor.org/info/rfc8520

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

A ANNEX:
MAPPING OF SECURITY MEASURES

4.3 PEOPLE

Security domain Title Description Threats
SSDLC phases
involved

Reference title

Training and

Awareness

PE-01. Define a

corporate strategy for

specific security

training

Ensure that all personnel participate in awareness-

raising activities and training, focusing on how to

apply security in a SDLC process. These activities

must be customised depending on roles and

responsibilities in the software lifecycle. Security

knowledge must be a requirement before starting

any SDLC project. The training should include

information about best practices to ensure a safe

work environment, security roles and responsibilities

within the project phases, and security tasks, as well

as security policies, standards, applicable

regulations and legislation.

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

LEGAL

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA).

- Software Assurance Maturity Model

(SAMM 1.5v). OWASP.

- Fundamental Practices for Secure

Software Development –

SAFECODE

- Systems and software engineering

- Software life cycle processes. ISO

12207

- BUILDING SECURITY IN

MATURIT Y MODEL (BSIMM).

BSIMM

- MITIGATING THE RISK OF

SOFTWARE VULNERABILITIES

BY ADOPTING A SECURE

SOFTWARE DEVELOPMENT

FRAMEWORK (SSDF). NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- Information Security Management.

ISO 27001

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- The BSA Framework for Secure

Software. BSA Software Alliance

Training and

Awareness

PE-02. Promote security

awareness at all

organisation levels

Include security activities to raise awareness among

the employees (courses, simulations, talks, security

capsules via e-mail, round tables, etc.) about how to

address security during the development process. If

the entire organization is sensitised to security, it will

be easier to implement the necessary measures to

achieve a process as secure as possible. These

activities may be focused on different profiles:

rewards depending on developers security training,

promotion for specific project manager security

training, decision-makers security awareness by

performing attack simulations (financial impact

simulations), etc.

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA).

- Secure Coding. Practical steps to

defend your web apps. SANS.

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM.

- Software Assurance Maturity Model

(SAMM). OWASP SAMM.

- Security Assurance in the SDLC for

the Internet of Things. ISACA.

- IoT Security Maturity Model.

Industrial Internet Consortium (IIC).

- Secure Software Development Life

Cycle Processes. CISA.

- THE DZONE GUIDE TO 2015

EDITION APPLICATION

SECURITY. DZONE.

- The BSA Framework for Secure

Software. BSA Software Alliance

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- "Systems and software engineering

-Software life cycle processes. ISO

12207"

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- "Information technology - Security

techniques - Information security

management systems -

Requirements. ISO 27001"

Training and

Awareness

PE-03. Assess the

security skills to be

updated

An organisation must stay up to date with the latest

security knowledge and certifications of its

employees. This assessment must be a matrix

covering both specific and cross-cutting security

aspects by means of exams, the renewal of

certifications, internal assessments, training

providers in order to classify the staff by levels in

function of their security preparation and

background, thus making it possible to assign them

specific tasks according to their level during the

different SDLC phases. At least, once a year must

be updated this information.

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

PHYSICAL ATTACK

LEGAL

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- "Information technology — Security

techniques — Information security

management systems —

Requirements. ISO 27001"

- "Systems and software engineering

- Software life cycle processes. ISO

12207"

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- Software Assurance Maturity Model

(SAMM). OWASP SAMM

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Training and

Awareness

PE-04. Allocate

resources to stay up to

date with security topics

Appoint resources and promote the implementation

of monitoring, tracking and update activities by

means of threat intelligence in order to be aware of

the status of current vulnerabilities and new types of

attacks that may affect your industry. Along with

security lessons learned, this information must be

centralised in an internal repository. The result of

these tasks will help to prevent future security

issues.

PERSONNEL

LEGAL

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA).

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM.

- Strategic Principles for Securing

the Internet of Things (IoT). U.S.

Department of Homeland Security.

- Code of Practice for Consumer IoT

Security. UK.

- "Systems and software engineering

-Software life cycle processes. ISO

12207"

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- GSMA IoT Security Assessment

Checklist - Reference CLP11_5

Roles and

Privileges

PE-05. Establish

security roles and

privileges within the

development project

Ensure that development teams work alongside

security teams by means of the definition,

identification and allocation of functions,

responsibilities and tasks in relation to security in all

phases of development. This measure ensures that

security is addressed when required.

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- The BSA Framework for Secure

Software. BSA Software Alliance.

- Systems and software engineering

— Software life cycle processes.

ISO 12207.

- MITIGATING THE RISK OF

SOFTWARE VULNERABILITIES

BY ADOPTING A SECURE

SOFTWARE DEVELOPMENT

FRAMEWORK (SSDF). NIST.

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

lifecycle requirements. IEC 62443-

4-1.

- CLASP Concepts – OWASP

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA)

- Software Assurance Maturity Model

(SAMM 1.5v). OWASP

- Fundamental Practices for Secure

Software Development,

SAFECODE

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

Roles and

Privileges

PE-06. Implement a

separation of duties in

the work team

It is essential to ensure a proper separation of duties

during the development process, implementing

security controls in order to prevent security impacts.

Without a separation of duties, people could carry

out fraudulent activities in any phase by leveraging

their privileges. The goal is to avoid the possibility of

users having admin rights or inadequate profiles for

critical tasks.

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

LEGAL

PHYSICAL ATTACK

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- Security Design Principles.

OWASP.

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA).

- Implementing Segregation of

Duties. ISACA.

- Secure Coding. Practical steps to

defend your web apps. SANS.

- Information technology — Security

techniques — Information security

management systems —

Requirements. ISO 27001

- Technical Considerations White

Paper. FCC TAC.

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- "Systems and software engineering

— Software life cycle processes.

ISO 12207"

- Fundamental Practices for Secure

Software Development,

SAFECODE

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM

- MITIGATING THE RISK OF

SOFTWARE VULNERABILITIES

BY ADOPTING A SECURE

SOFTWARE DEVELOPMENT

FRAMEWORK (SSDF). NIST

- The BSA Framework for Secure

Software. BSA Software Alliance

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

Roles and

Privileges

PE-07. Protect the

process against

privilege abuse

The integrity of the development process must be

guaranteed. Implement security measures to access

project resources so as to prevent any team member

(insider, third-party) with privileges from disabling

security controls, establishing or modifying policies

and guides, collecting sensitive data, etc. Perform

audits periodically to ensure the integrity of

information.

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

PHYSICAL ATTACK

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA)

- The BSA Framework for Secure

Software. BSA Software Alliance

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- Fundamental Practices for Secure

Software Development,

SAFECODE

- MITIGATING THE RISK OF

SOFTWARE VULNERABILITIES

BY ADOPTING A SECURE

SOFTWARE DEVELOPMENT

FRAMEWORK (SSDF). NIST

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- "Information technology — Security

techniques — Information security

management systems —

Requirements. ISO 27001"

- Software Assurance Maturity Model

(SAMM). OWASP SAMM

Roles and

Privileges

PE-08. Allocate

resources for process

monitoring

Designate a person to perform, review and put forth

improvement actions for the business continuity

plan: preventing network crashes and service

redundancies, safeguarding critical points that may

slow down or compromise the development process

(SDLC), like the unavailability of third-party services,

the uncontrolled access to sensitive locations where

information is stored, the lack or expiry of software

licences involved in the SDLC, etc.

PERSONNEL

OUTAGES

UNINTENTIONAL

DAMAGES

(Accidental)

PHYSICAL ATTACK

LEGAL

FAILURES /

MALFUNCTIONS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA)

- The BSA Framework for Secure

Software. BSA Software Alliance

- "Systems and software engineering

— Software life cycle processes.

ISO 12207"

- MITIGATING THE RISK OF

SOFTWARE VULNERABILITIES

BY ADOPTING A SECURE

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

SOFTWARE DEVELOPMENT

FRAMEWORK (SSDF). NIST

- Software Assurance Maturity Model

(SAMM 1.5v). OWASP

- Fundamental Practices for Secure

Software Development,

SAFECODE

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- Information security management.

ISO 27001

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

Roles and

Privileges
PE-09. Designate a

physical security officer

Designate a resource responsible for fulfilling the

plan or procedure defined to take actions when risks

have to be mitigated and to contain them and

prevent them from resulting in additional risks if

information regarding the SDLC or spaces where it is

stored are compromised due to a fire, flood, electric

show, etc.

OUTAGES

PHYSICAL ATTACK

LEGAL

FAILURES /

MALFUNCTIONS

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA)

- The BSA Framework for Secure

Software. BSA Software Alliance

- "Systems and software engineering

—

- Software life cycle processes. ISO

12207"

- MITIGATING THE RISK OF

SOFTWARE VULNERABILITIES

BY ADOPTING A SECURE

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

SOFTWARE DEVELOPMENT

FRAMEWORK (SSDF). NIST

- Software Assurance Maturity Model

(SAMM 1.5v). OWASP

- Fundamental Practices for Secure

Software Development,

SAFECODE

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- Information security management.

ISO 27001

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

Security Culture

PE-10. Establish

governance and

controls for critical

security know-how

The profiles with security knowledge are essential in

the development process. Design a policy to reward

and stimulate this kind of profiles in order to reduce

the risk of security knowledge being lost in the

organisation, as well as internal threats: staff

turnover, espionage, sabotage, etc.

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

LEGAL

PHYSICAL ATTACK

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- "Payment Card Industry

- Software Security Framework. PCI

Security Standards Council"

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM

- "Systems and software engineering

- Software life cycle processes. ISO

12207"

- "Information technology — Security

techniques — Information security

management systems —

Requirements. ISO 27001"

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- The BSA Framework for Secure

Software. BSA Software Alliance

- Software Assurance Maturity Model

(SAMM). OWASP SAMM

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

Security Culture
PE-11. Consult with

security experts to

improve the process

Engage internal or external security support to

complement, support, or cover security aspects and

to contribute during specific activities, such as:

- Use of external penetration testers during the

testing phase to provide with different perspectives,

adding robustness to the process.

- Use of specific expert in security tools to control

access to the process resources, increasing the

confidentiality and integrity throughout all phases

- Use of a coach to bring security into the SDLC

phases, etc.

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

LEGAL

PHYSICAL ATTACK

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM

- "Systems and software engineering

—

- Software life cycle processes. ISO

12207"

- SECURE CODING BEST

PRACTICES HANDBOOK.

VERACODE

- "Information technology — Security

techniques — Information security

management systems —

Requirements. ISO 27001"

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- Software Assurance Maturity Model

(SAMM). OWASP SAMM

Security Culture
PE-12. Designate a

Security Champion

figure

Designate a role to centralise all issues related to

software development security. This figure should

not be responsible for the implementation of security

functions, but for coordination, follow-up, planning,

and monitoring efforts and activities related to

security. This position should be understood as a

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

LEGAL

PHYSICAL ATTACK

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

- Software Security Takes a

Champion. SAFECODE

- The BSA Framework for Secure

Software. BSA Software Alliance

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

bridge, a security catalyst among organisation

statements (developers, team leaders and decision-

makers).

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- NISTIR 8200 - Interagency Report

on the Status of International

Cybersecurity Standardization for

the Internet of Things (IoT). NIST

- "Information technology — Security

techniques — Information security

management systems —

Requirements. ISO 27001"

- SECURE CODING BEST

PRACTICES HANDBOOK.

VERACODE

- BUILDING SECURITY IN

MATURITY MODEL (BSIMM).

BSIMM

- MITIGATING THE RISK OF

SOFTWARE VULNERABILITIES

BY ADOPTING A SECURE

SOFTWARE DEVELOPMENT

FRAMEWORK (SSDF). NIST

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- Security Champions. OWASP

- GSMA IoT Security Assessment

Checklist - Reference CLP11_7

Security Culture

PE-13. Monitor and

respond to the

supporting security

incidents

Designate a resource (internal or through a third-

party service) to monitor, operate and respond to

alarms generated by events resulting from the loss

or poor performance of the infrastructures that

support the secure development process (sSDLC),

which are essential for correct functioning. This

would be the case of communications slowing down

or being lost, preventing the exchange of

documentation between team members or with third

parties, as well as the loss or unavailability of data

OUTAGES

UNINTENTIONAL

DAMAGES

(Accidental)

LEGAL

FAILURES /

MALFUNCTIONS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

- The BSA Framework for Secure

Software. BSA Software Alliance

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA)

- Proactive Controls for developers

v3.0. OWASP

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

repositories, be they owned or through a cloud

service, etc.

DAMAGE / LOSS DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND

DISPOSAL

- "Systems and software engineering

—Software life cycle processes.

ISO 12207"

- Fundamental Practices for Secure

Software Development,

SAFECODE

- The BSA Framework for Secure

Software. BSA Software Alliance

- NISTIR 8200 - Interagency Report

on the Status of International

Cybersecurity Standardization for

the Internet of Things (IoT). NIST

- NIST SP 800 53r5: Security and

Privacy Controls for Federal

Information Systems and

Organizations. NIST

- ISO-IEC 27001. ISO

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

4.4 PROCESSES

Security domain Title Description Threats
SSDLC phases
involved

Reference title

Third-Party
Management

PR-01. Implement a supply
chain management plan

During a SDLC process, components or services
are outsourced to a third-party (external supplier).
A supply chain management plan should be
implemented and integrated into this process to
ensure the integrity of the SDLC.
This plan should include information related to
security frameworks to be used, risk management,
third-party acquisition management, purchasing
contract definition, etc., as well as controls that
prevent third-party tampering or compromise, e.g.
avoiding reverse engineering to better understand
how a software works and to leverage this
knowledge to carry-out malicious activities (anti-
reverse engineering).

PERSONNEL
UNINTENTIONAL
DAMAGES
OUTAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- Proactive Controls for developers
v3.0. OWASP

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

- GSMA IoT Security Assessment
Checklist - Reference CLP11_7

Third-Party
Management

PR-02. Assess the software
dependency process

Ensure a proper management of third parties and
dependencies of the software development using
risk management and integrating security
requirements in contracts, ensuring the visibility
and traceability of components, documenting all
components and subcomponents acquired,
managing incidents, scanning dependencies, etc.
CVSS must be consulted when choosing a third-
party software/library and dependencies must be
checked periodically or every time they are
updated. An open-source update plan for IoT must
be considered and followed, monitoring and
managing third-party vulnerabilities.

PERSONNEL
UNINTENTIONAL
DAMAGES
OUTAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- OWASP Dependency-Check.
OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

- Proactive Controls for developers
v3.0. OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Security for industrial automation
and control systems. Part 4-1:
Secure product development

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

lifecycle requirements. IEC 62443-
4-1

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

Third-Party
Management

PR-03. Test third-party
processes

Define a process to secure third-party code by
performing controls in order to detect vulnerable
components, such as penetration tests, fuzzing
tests, validation tests, etc.
The objective is to verify that the technical,
functional, and business requirements are met.
It is recommended to execute this process in every
iteration (sprint).

PERSONNEL
UNINTENTIONAL
DAMAGES
OUTAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

TESTING AND
ACCEPTANCE

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Proactive Controls for developers
v3.0. OWASP

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- The BSA Framework for Secure
Software. BSA Software Alliance

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- ISO-IEC 27001. ISO

- GSMA IoT Security Assessment
Checklist - Reference CLP11_7

Third-Party
Management

PR-04. Verify third-party
software and services

Verify that the software provided by third parties
meets the security requirements, including the
requirements specified in contracts. Define
requirements for commercial software and verify
the evidence provided by the supplier (audits,
testing, software certifications, etc.).
It is advisable to check that the requirements have
been met at least every time a delivery occurs.

PERSONNEL
UNINTENTIONAL
DAMAGES
OUTAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Proactive Controls for developers
v3.0. OWASP

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

Third-Party
Management

PR-05. Disseminate a
communication procedure
to request external support

Establish a procedure for the organisation to know
the steps to be taken in the event of requiring
support from external providers to face events or
incidents concerning cloud services, testing
services, etc., indicating at least the person of
contact in charge of the service, the request model
and communication channel, incident follow-up
and management, the remediation, documentation
updates, version, etc.

OUTAGES
UNINTENTIONAL
DAMAGES
(accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- Proactive Controls for developers
v3.0. OWASP

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS) . OWASP

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

Third-Party
Management

PR-06. Protect data against
leakages

Require, audit, and specify confidentiality clauses
for all internal and external personnel with access
to the facilities with a view to preventing leakages
of information on topics such as software design or
architecture, which may represent sabotage or
espionage attempts during any of the phases of
the product development (SDLC).

PERSONNEL
OUTAGES
PHYSICAL ATTACK
LEGAL
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- Proactive Controls for developers
v3.0. OWASP

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS) . OWASP

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

Third-Party
Management

PR-07. Contractually require
controlling and monitoring
the external services
through KPI's

By means of contractual clauses, ensure that both
internal and external service providers implement
security controls to measure the quality of the
service (e.g. service incident response time,
unavailability terms, etc.) and detect potential
flaws, stipulating a reporting period (e.g. on a
weekly basis) for the KPIs to assess the service,
along with measures to be taken to prevent
impacts on the SDLC phases, such as, for
instance, the maintenance phase.

OUTAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- Proactive Controls for developers
v3.0. OWASP

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- NIST SP 800 53r5: Security and
Privacy Controls for Federal

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

Operations
Management

PR-08. Define an Incident
Management plan

Provide guidance for the definition and allocation
of roles, responsibilities and activities to be
implemented by the organisations in the event of
security incidents.
Security incidents pose a higher impact as the
SDLC process reaches the last stages, so it is
crucial to manage it following an established
resolution process. This process should contain at
least:
- Incident detection and registration.
- Classification and initial support.
- Research and diagnosis.
- Solution and service restoration.
- Incident closure.
- Monitoring, follow-up and communication of the
incident.

Maintain, to the greatest extent feasible, a full
inventory of third party components and
dependencies, and track vulnerabilities, patches,
and updates to those components to preserve
security.

An Incident Management Plan should be defined
and periodically updated.

PERSONNEL
UNINTENTIONAL
DAMAGES
OUTAGES
PHYSICAL
ATTACKS
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Proactive Controls for developers
v3.0. OWASP

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- Fundamental Practices for Secure
Software Development,
SAFECODE

- The BSA Framework for Secure
Software. BSA Software Alliance

- NISTIR 8200 - Interagency Report
on the Status of International
Cybersecurity Standardization for
the Internet of Things (IoT). NIST

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- ISO-IEC 27001. ISO

- GSMA IoT Security Assessment
Checklist - Reference CLP11_5

Operations
Management

PR-09. Define a Change
Management plan

A Change Management Plan should be defined to
manage any changes that may be take place
during the SDLC process. This entails ensuring
control over the budget, schedule, scope,
communication, and resources. The main focus is
to minimise the impact a change throughout the
process could have on the different assets:
business, team, users, and other important
stakeholders.
Change management is a highly important activity
both in the development and integration phases
(changes may affect the requirements) as well as
in the maintenance and disposal, during updates,
patches or functionalities changes.
The plan should detail a procedure containing at
least:
- Identification and formal request.
- Impact analysis and assessment.

- Validation.
- Planning and testing.
- Implementation.
- Monitoring, follow-up and communication of the
change.

PERSONNEL
UNINTENTIONAL
DAMAGES
OUTAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure
Software. BSA Software Alliance

- "Payment Card Industry

- Software Security Framework. PCI
Security Standards Council"

- Proactive Controls for developers
v3.0. OWASP

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- ISO-IEC 27001. ISO

- NISTIR 8200 - Interagency Report
on the Status of International
Cybersecurity Standardization for
the Internet of Things (IoT). NIST

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- GSMA IoT Security Assessment
Checklist - Reference CLP11_5

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Operations
Management

PR-10. Implement
Vulnerability and Patch
Management

Develop a process for vulnerability and update
management as well as for vulnerability disclosure
from external and internal parties to reduce the risk
of system failures, especially in operation. This
process must encompass identification and
patching processes and the communication
process with the relevant stakeholders when a
vulnerability is discovered. This guide should
document the process and controls to be carried
out by the project team, such as:
- Vulnerability discovery/disclosure
- Identification of the affected asset
- Development of the solution or patch
- Testing, solution compliance
- Patch implementation, update
- Update follow-up

PERSONNEL
LEGAL
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- The BSA Framework for Secure
Software. BSA Software Alliance

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Proactive Controls for developers
v3.0. OWASP

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- GSMA IoT Security Assessment
Checklist - Reference CLP12_5

Operations
Management

PR-11. Implement
Configuration Management

Configuration management focuses on maintaining
the integrity of the system, ensuring that
uncontrolled changes are implemented during the
deployment and maintenance phases of the SDLC
process. It must be configured in a restrictive way
to guarantee maximum resistance against
malicious or unintentional attacks (changes to a
file or code element, adaptation of security settings
on the operating environment, etc.).

PERSONNEL
LEGAL
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure
Software. BSA Software Alliance

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- Application Security Verification
Standard 4.0 (ASVS) . OWASP

- Proactive Controls for developers
v3.0. OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

- GSMA IoT Security Assessment
Checklist - Reference CLP11_5

SDLC
Methodology

PR-12. Establish a Control
Access and Authorisation
policy

The access to resources and processes should be
protected to prevent users without authorisation
from accessing restricted resources (e.g. data
repository, password storage, test reports, etc.) at
any stage of the SDLC process.
By establishing user access privileges, it is
possible to ensure the confidentiality, integrity and

PEPERSONNEL
UNINTENTIONAL
DAMAGES
OUTAGES

PHYSICAL
ATTACKS

DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION

- The BSA Framework for Secure
Software. BSA Software Alliance

- Fundamental Practices for Secure
Software Development,
SAFECODE

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

availability of data and process:
- Only authorised persons (based on their
privileges) will be able to access the resources
(phases, information, systems, equipment,
programs, applications, databases, networks, etc.).
- The control access will make it possible to
identify and audit the accesses that have taken
place, establishing internal security controls.

LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

MAINTENANCE AND
DISPOSAL

- Proactive Controls for developers
v3.0. OWASP

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- The BSA Framework for Secure
Software. BSA Software Alliance

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- NISTIR 8200 - Interagency Report
on the Status of International
Cybersecurity Standardization for
the Internet of Things (IoT). NIST

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

- GSMA IoT Security Assessment
Checklist - Reference CLP11_5

SDLC
Methodology

PR-13. Automate the SDLC
process

Processes supported by tested tools should be
automated in order to reduce costs and human
efforts and errors. The main objective is to improve
the monitoring and measurement of development
progress, as well as the implementation of security
measures for the process. The result of automated
testing must be analysed, since automated tools

PERSONNEL
UNINTENTIONAL
DAMAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS

DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

are based on patterns that can suffer
modifications, which may not be detected and
produce false positives. In cases where this is not
possible, manual tools should be used.
It is recommended to execute this process in every
iteration (sprint).

ACTIVITY / ABUSE
DAMAGE / LOSS

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- ISO-IEC 27001. ISO

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- The BSA Framework for Secure
Software. BSA Software Alliance

SDLC
Methodology

PR-14. Define security
metrics

Implement security metrics, which should be
defined and tracked in order to verify that the
specified security requirements have been fulfilled
during the Software Development process.
Checking the security metrics should be a
necessary requirement to:
- Evaluate the security maturity and identify actions
to improve the process (SMM).

- Reassure quality for all SDLC phases.
- Assess the status of an ongoing process.
- Track potential risks.
- Discover process issues before they become
critical.
- Evaluate the ability of the project team to control
the quality of software products.

PERSONNEL
UNINTENTIONAL
DAMAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- The BSA Framework for Secure
Software. BSA Software Alliance

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

SDLC
Methodology

PR-15. Adopt a maturity
model

Adopt a software assurance maturity model for
software development to identify security best
practices during the process (e.g. OWASP SAMM
and BSIMM). The implementation of security is
considered mature if the mechanisms used
effectively achieve the security requirements. The
analysis takes account of specific threats to the
regulatory and compliance requirements of an
organisation's industry, the unique risks present in
an environment, and the organisation's threat
profile.

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- "Payment Card Industry

- Software Security Framework. PCI
Security Standards Council"

- "Software Assurance Maturity
Model (SAMM)

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
OWASP SAMM

- BSIMM"

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- BSIMM.

- The BSA Framework for Secure
Software. BSA Software Alliance.

SDLC
Methodology

PR-16. Define and
document the SDLC
process

Define security guides establishing the
performance of security tests during the different
phases of development, defining best practices
such as the generation of use cases, the
performance of penetration tests during
development, the use of tools, the performance of
security tests at the end of the process, etc.
It is recommended to execute this process in every
iteration (sprint) or when a modification is
implemented.

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- Proactive Controls for developers
v3.0. OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Secure
Deployment

PR-17. Define a disposal
strategy

A plan for the withdrawal of the solution at the end
of the life-cycle must be considered. The plan must
include measures to formally retire stored data
according to the needs (organisational, data
privacy, regulatory compliance) including third-
party components and the communication to the
stakeholders. To ensure the disposal process, an
audit log must be maintained.

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental) /
LEGAL

MAINTENANCE AND
DISPOSAL

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- The BSA Framework for Secure
Software. BSA Software Alliance

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Proactive Controls for developers
v3.0. OWASP

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

- GSMA IoT Security Assessment
Checklist - Reference CLP12_5
and CLP13_8

Secure
Deployment

PR-18. Establish process
for SDLC vulnerabilities
follow-up, monitoring and
updates

Establish a procedure to inform of new published
vulnerabilities (e.g. establishing mechanisms to
receive feedback from security research
community) that may affect the software
development life cycle (including those that affect
third party components), so that they can be taken
into account in all phases. This information
measure can help the organisation not to incur into
known errors, and to take them into account as
security requirements in the requirements phase of
the SDLC for future developments. This includes
not only for software development projects but also
as requirements to be stipulated with third parties
for services or infrastructure, such as external data
repository services for backups or access control
systems for server rooms.

PERSONNEL
OUTAGES
UNINTENTIONAL
DAMAGES
(Accidental)
PHYSICAL ATTACK
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- Recommended Security Controls
for Federal Information Systems
and Organizations. NIST 800-53

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Secure
Deployment

PR-19. Implement a testing
strategy

Define testing strategy that eliminates trivial bugs
by utilizing automated tools for both static and
dynamic analysis. Use infrastructure-as-code or
digital twins to ensure accuracy of testing
processes for IoT in critical infrastructure.

This strategy should contain considerations such
as test scope definition, criteria to be used, quality
control points, procedures to solve errors, etc.

PERSONNEL
UNINTENTIONAL
DAMAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1.

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM.

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST.

- Fundamental Practices for Secure
Software Development,
SAFECODE.

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA.

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST.

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM.

- Application Security Verification
Standard 4.0 (ASVS). OWASP.

- The BSA Framework for Secure
Software. BSA Software Alliance.

Secure
Deployment

PR-20. Define a secure
deployment strategy

Define effective and secure deployment strategy,
weighing the options in terms of the impact of
change on the targeted systems, and the end-
users.

It must be considered that only qualified personnel
must have access to deployment environment,
audit systems for all deployments establishing
versions control, acceptance threshold, person
who conducted it, etc.

PERSONNEL
LEGAL
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure
Software. BSA Software Alliance.

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST.

- Application Security Verification
Standard 4.0 (ASVS). OWASP.

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- Proactive Controls for developers
v3.0. OWASP.

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA.

- "Systems and software engineering
—

- Software life cycle processes. ISO
12207. "

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE.

- Fundamental Practices for Secure
Software Development,
SAFECODE.

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA).

- Application Security Verification
Standard 4.0 (ASVS). OWASP.

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1.

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST.

- ISO-IEC 27001. ISO.

Security Design
PR-21. Provide a secure
framework

Adopt a security framework encompassing the
necessary requirements in order to define and
provide guides and policies to be implemented
throughout the Software Development Life Cycle
process. Known frameworks minimise risks and
threats that could affect the process. Define a
secure framework to ensure in-depth defence and
observe security by design considering the entire
life cycle of the solution and comprising the design,
maintenance, and disposal phases.

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
LEGAL
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

REQUIREMENTS
DESIGN

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- "Payment Card Industry

- Software Security Framework. PCI
Security Standards Council"

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- ISO-IEC 27001. ISO

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

- Security-First Design for IoT
Devices - IoTCentral. IoTCentral

- Application Security Verification
Standard 4.0 (ASVS). OWASP

Security Design
PR-22. Apply least privilege
principle

Ensure that user and software privileges are
strictly limited to features required to carry out the
operations. Limiting permissions and rights in the
tasks to be performed is an important activity
during the SDLC process, gaining greater
relevance in the Design and Testing phases.
Privileges must have a resilient configuration
against unauthorised changes, and must be in line
with authorisation and access control policies.

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Proactive Controls for developers
v3.0. OWASP

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

- GSMA IoT Security Assessment
Checklist - Reference CLP12_5

Security Design
PR-23. Verify security
controls

Allocate a project resource (i.e. a data repository)
to centralise security control management
activities (security control updates, tracking,
monitoring) to be carried out during the SDLC
process. Verify that the security controls
implemented are accessible, controlled regularly,
safe, and reusable, avoiding duplicates and
ensuring they are efficient, reliable, and based on
international best practices. It is recommended to
review and update them periodically, at least once
a year or upon every important change (new
technologies, project's lessons learned, etc.).

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- The BSA Framework for Secure
Software. BSA Software Alliance

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

Security Design
PR-24. Perform a design
review

During the Design phase of the SDLC process,
solutions must be reviewed from the point of view
of security, ensuring that security requirements,
which have been previously defined, have been
met, identifying the attack surface, carrying out a
threat modelling, providing security mechanisms,
and scheduling periodic reviews throughout the
development process based on milestones. It is
recommended to execute this process in every
iteration (sprint).

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

DESIGN

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- Fundamental Practices for Secure
Software Development,
SAFECODE

- The BSA Framework for Secure
Software. BSA Software Alliance

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- NISTIR 8200 - Interagency Report
on the Status of International
Cybersecurity Standardization for
the Internet of Things (IoT). NIST

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- ISO-IEC 27001. ISO

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- "Software Assurance Maturity
Model (SAMM). OWASP SAMM

- CSA Guidance - CSA"

- GSMA IoT Security Assessment
Checklist - Reference CLP11_7

Security Design
PR-25. Specify security
requirements

Establishing security requirements prior to
development makes it possible to implement
security functionalities that ensure compliance with
standards and laws and avoid known
vulnerabilities. The definition of these security
requirements makes it possible to industrialise the
security standards that apply to different
developments, complying with a series of standard
security controls, making it possible to fix past
problems, and helping to prevent future flaws.
Some best practices would be the performance of
security and requirement compliance
assessments, the specification of requirements
based on known risks, the definition of
requirements in agreement with providers, the
implementation of security user stories, and the
performance of security audits. They must be
reviewed periodically, at least every time known
best practices and regulations are updated.

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
LEGAL
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

REQUIREMENTS

- Proactive Controls for developers
v3.0. OWASP

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS) . OWASP

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- GSMA IoT Security Assessment
Checklist - Reference CLP11_7

Security Design
PR-26. Perform a risk
assessment

Identify risks throughout the software development
process, analysing the sources, data storage,
applications or third parties. As part of the
analysis, make sure that the data to be protected
are reliable, and that there are measures in place
to prevent the unauthorised access, loss,
destruction or manipulation thereof. A security risk
assessment should include:
- The analysis of the potential risk if the security of
each of the following components were
compromised: sources, storage, sensitive data,
applications, data stores, cloud services.
- The analysis of data classification mechanisms
and data security capabilities in order to protect
sensitive data from unauthorised use, access,
loss, destruction or sabotages.
- The analysis of the potential for trusted insiders
to misuse their privileged access to data.
Based on these analyses, implement best
practices for the mitigation of each potential
security threat.
This process must be periodically reviewed, at
least once a year.

PERSONNEL
OUTAGES
UNINTENTIONAL
DAMAGES
(Accidental)
LEGAL
PHYSICAL ATTACK
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- CSA IoT Security Controls
Framework Cloud Security Alliance
(CSA)

- International Organization for
Standardization (ISO). ISO27001

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- GSMA IoT Security Assessment
Checklist - Reference CLP11_5

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Security Design
PR-27. Implement Threat
Modelling

In the software design phase, it is necessary to
study the architecture and the design of the
system by means of threat modelling techniques.
Threat modelling thoroughly identifies key assets
thus far hidden, as well as their associated risks.
Through this technique, developers can focus their
efforts on subsequent phases, applying tools
oriented to the uncovered risks.
Developers should regard the following aspects as
best practices:
- Building and maintaining threat models for each
application, defining the profile of potential
attackers by means of the software architecture.
- Building and maintaining abuse case models per
project, establishing threat assessment systems.
Explicitly evaluate the risk of third-party
components and generate threat models with
security controls.

OUTAGES
NEFARIOUS
ACTIVITY / ABUSE

DESIGN

- Security Assurance in the SDLC for
the Internet of Things - ISACA.

- "Software Assurance Maturity
Model (SAMM)

- Open Reference Architecture for
Security and Privacy Tactical
Threat Modeling Veracode

- OWASP SAMM. Open Reference
Architecture for Security and
Privacy

- Security in the Software
Development Lifecycle- USENIX "

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- GSMA IoT Security Assessment
Checklist - Reference CLP11_7

Security Design
PR-28. Implement data
classification

Data are a critical asset from the point of view of
security.
Based on the classification of information (status,
use, owner, risk, etc.), assign a level of sensitivity
to the data in the requirement phase to establish
the corresponding protection measures throughout
the SDLC process (ensuring the privacy of data at

PERSONNEL
FAILURES /
MALFUNCTIONS
LEGAL
DAMAGE / LOSS

REQUIREMENTS
DESIGN

- Proactive Controls for developers
v3.0. OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

rest by means of encryption, preventing
unauthorised access by means of control access,
etc.).

- ISO-IEC 27001. ISO

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- GSMA IoT Security Assessment
Checklist - Reference CLP12_5

Security Design

PR-29. Ensure that the
hardware requirements
derived from software
requirements are
considered

Bear in mind that, as part of the functional
requirements, it is essential to take into account
the implications for hardware derived from
software security requirements. Implement
controls during the Requirements phase in order to
associate/map software security requirement and
hardware requirements and ultimately fulfil them.
For instance, associate secure boot mechanisms
with the use of chips/modules supporting this
technology (Root-of-Trust), identifying hardware
needs based on the communication protocol
chosen in order to determine the power source
depending on consumption, etc.

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
LEGAL
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

REQUIREMENTS

- Proactive Controls for developers
v3.0. OWASP

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- GSMA IoT Security Assessment
Checklist - Reference CLP11_7

Internal Policies
PR-30. Establish a
communication plan for
security measures

Develop a communication plan targeted at all
persons involved in the development process
(specially third-parties) in order to report on the
security measures that must be observed for a
proper development, such as applicable
regulations, security frameworks and
methodologies to be used, security best practices,
etc. This plan must be reviewed, validated and
disseminated in the organisation at least once a
year.

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
LEGAL
PHYSICAL ATTACK
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure

Software. BSA Software Alliance

- MITIGATING THE RISK OF

SOFTWARE VULNERABILITIES

BY ADOPTING A SECURE

SOFTWARE DEVELOPMENT

FRAMEWORK (SSDF). NIST

- Fundamental Practices for Secure

Software Development,

SAFECODE

- Software Assurance Maturity Model

(SAMM 1.5v). OWASP

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- "Information technology — Security

techniques — Information security

management systems —

Requirements. ISO 27001"

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Internal Policies
PR-31. Control the process
against information
disclosure

Ensure that process information is not disclosed or
tampered with by any stakeholder throughout the
lifecycle without prior authorisation, as it could
result in a compromise of intellectual property, a
breach of regulatory compliance, reputational
losses, etc. Security measures should be
considered such as role-based access control,
authorisation, permission assignment, non-
disclosure clauses in the contracts, etc.

PERSONNEL

UNINTENTIONAL

DAMAGES

(Accidental)

LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure

Software. BSA Software Alliance.

- Proactive Controls for developers

v3.0. OWASP.

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

- "Information technology- Security

techniques - Information security

management systems -

Requirements. ISO 27001"

- Recommended Security Controls
for Federal Information Systems
and Organizations. NIST 800-53

Internal Policies
PR-32. Verify and ensure
the availability of updated
security documents

Ensure the availability of security policies,
procedures, guides, applicable regulations and
requirements for developers. Throughout the
process, a centralised repository must be
accessible. Organisations have to implement
change management to guarantee the integrity of
data and avoid introducing errors in the process.

PERSONNEL
UNINTENTIONAL
DAMAGES
(Accidental)
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Application Security Verification

Standard 4.0 (ASVS). OWASP

- The BSA Framework for Secure

Software. BSA Software Alliance

- CSA IoT Security Controls

Framework. Cloud Security Alliance

(CSA)

- Security for industrial automation

and control systems. Part 4-1:

Secure product development

lifecycle requirements. IEC 62443-

4-1

- "Information technology — Security

techniques — Information security

management systems —

Requirements. ISO 27001"

- Proactive Controls for developers

v3.0. OWASP

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- "Systems and software engineering

-Software life cycle processes. ISO

12207"

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

Internal Policies
PR-33. Plan an alternative
for unavailability cases

Distribute your resources so as to not centralise
security knowledge in a single resource, be it
internal or through a third party, with a view to
avoiding cases of unavailability that may bring the
secure development (sSDLC) process to a
standstill in any of the phases. This would be the
case, for instance, when there is only one security
pentesting specialist during the Testing phase.
This measure focuses on providing an alternative
for SDLC critical points (resources redundancy).

PERSONNEL

OUTAGES

UNINTENTIONAL

DAMAGES

(Accidental)

LEGAL

FAILURES /

MALFUNCTIONS

NEFARIOUS

ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP

LEMENTATION

TESTING AND

ACCEPTANCE

DEPLOYMENT AND

INTEGRATION

MAINTENANCE AND
DISPOSAL

- "Information technology — Security

techniques — Information security

management systems —

Requirements. ISO 27001"

- "Systems and software engineering

—Software life cycle processes.

ISO 12207"

- Recommended Security Controls

for Federal Information Systems

and Organizations. NIST 800-53

- Software Assurance Maturity Model

(SAMM). OWASP SAMM

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

4.5 TECHNOLOGIES

Security domain Title Description Threats
SSDLC phases
involved

Reference title

Access Control
TC-01. Implement
authorisation

Implement access control in IoT systems and
software to ensure that the system verifies that
users and applications have the right permissions
allocated to their roles to access system
resources. This can be done by means of the least
privilege principle and a strategy regarding
authorisation policies, controls, and design
principles for different categories of data.

If a password is being used for authentication, the
asset should force the user to change the
password at first use. Furthermore, typed
characters should be masked.

PERSONNEL
PHYSICAL ATTACK
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
DEPLOYMENT AND
INTEGRATION

- The BSA Framework for Secure
Software. BSA Software Alliance

- Proactive Controls for developers
v3.0. OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- GSMA IoT Security Assessment
Checklist - Reference CLP12_5
and CLP13_6

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Access Control
TC-02. Secure storage of
users' credentials

Ensure that user credentials of IoT systems (and
other underlying infrastructure) are secured.
Passwords must always be hashed with a salt.
Password bolts are often used to hard code
credentials for system communications, so that the
system has to request the credentials before
accessing a resource. This measure prevents to
access to sensitive functionalities and data (e.g.
source code).

FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Proactive Controls for developers
v3.0. OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- GSMA IoT Security Assessment
Checklist - Reference CLP11_6

Access Control

TC-03. Deploy physical
protection for systems

Systems and their corresponding hardware must
be protected against unauthorised modification
attempts and direct access, as well as other
dangers (fire, water, cooling issues, etc.). Physical
access must be controlled and unused physical
interfaces must be disabled or inaccessible.
Removing unnecessary items helps to reduce the
attack surface.

PERSONNEL
OUTAGES
PHYSICAL ATTACK
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Security Design Principles.
OWASP

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- The BSA Framework for Secure
Software. BSA Software Alliance

- GSMA IoT Security Assessment
Checklist - Reference CLP13_7

Access Control

TC-04. Implement Key
management and
authentication mechanisms
(e.g. FIDO)

Ensure the secure management of service
credentials for your SDLC systems, especially in
the context of web and cloud services. They must
be temporary and single-use, and the right
communication privileges have to be allocated for
the different service credentials (e.g. user
credentials vs. System credentials).

FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DESIGN
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- GSMA IoT Security Assessment
Checklist - Reference CLP12_5
and CLP13_6

Access Control
TC-05. Control the physical
access to the critical
facilities

Implement a physical access control system with
authorisation mechanisms to identify users and
their privileges. This system should be monitored
and provide event logs for all accesses, including
unauthorised access attempts. The access to
physical facilities storing information concerning
the SDLC or systems that support the process
(repositories, network equipment, documentation
files, etc.) must be adequately protected. This
measure can be stipulated in contracts with
external providers concerning the control of
facilities containing information about the service
hired. Additionally, a CCTV surveillance system
could be configured to communicate with an alarm

PERSONNEL
OUTAGES
UNINTENTIONAL
DAMAGES
(Accidental)
PHYSICAL ATTACK
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS

- The BSA Framework for Secure
Software. BSA Software Alliance

- Fundamental Practices for Secure
Software Development,
SAFECODE

- Proactive Controls for developers
v3.0. OWASP

- Application Security Verification
Standard 4.0 (ASVS) . OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

system (e.g. SIEM) and send signals alerting to
unauthorised access attempts.

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- NISTIR 8200 - Interagency Report
on the Status of International
Cybersecurity Standardization for
the Internet of Things (IoT). NIST

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

Third-Party
Software

TC-06. Use libraries and
third-party component that
are patched for latest
known vulnerabilities

Ensure that your SDLC model enforces the use of
the latest versions of third-party libraries to
safeguard their integrity. The most costly and
extensive attacks have been caused by this issue.
Check the versions of your dependencies at least
quarterly once the software under construction is
in production.

FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
MAINTENANCE AND
DISPOSAL

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Proactive Controls for developers
v3.0. OWASP

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

Third-Party
Software

TC-07. Use known secure
frameworks with long-term
support

For the foundation technologies of the software
under development, use and verify known software
security frameworks from third party providers
supplying LTS (Long Time Support) or similar.
Some software have associated security flaws, so
it is essential to make sure that these components
can be trusted in the long term.

These components should be chosen considering
if they are maintained by a private organisation or
an active group, if security patches are available in
short time when a vulnerability is disclosed and if
developers can be contacted if a vulnerability is
identified.

FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DESIGN
DEVELOPMENT/IMP
LEMENTATION

- The BSA Framework for Secure
Software. BSA Software Alliance

- Proactive Controls for developers
v3.0. OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Application Security Verification
Standard 4.0 (ASVS) . OWASP

- ISO-IEC 27001. ISO

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

Secure
Communication

TC-08. Use secure
communication protocols

Ensure that communications are always encrypted
between IoT systems and the underlying
infrastructure they are integrated. Additionally, it is

PERSONNEL
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION

- Application Security Verification
Standard 4.0 (ASVS). OWASP

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

also recommended to implement mechanisms to
authenticate communications.

TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- NISTIR 8200 - Interagency Report
on the Status of International
Cybersecurity Standardization for
the Internet of Things (IoT). NIST

- Proactive Controls for developers
v3.0. OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- The BSA Framework for Secure
Software. BSA Software Alliance

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- GSMA IoT Security Assessment
Checklist - Reference CLP12_6
and CLP13_6

Secure
Communication

TC-09. Use proven
encryption techniques

In any IoT system, data must be encrypted, both at
rest and in transit, using a recognised encryption
algorithm. However, even resilient algorithms are
not efficient if they are not properly used (e.g.
sufficient key length). It is necessary to use an
initialisation vector and to guarantee a minimum
level of entropy. It is highly recommended to apply
hashes to protect electronic signatures. These
measures apply both to original data and to any
existing backups. Potential legal consequences
may arise if due diligence it is not in place for data
protection.

LEGAL
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Proactive Controls for developers
v3.0. OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Fundamental Practices for Secure
Software Development,
SAFECODE

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

Secure
Communication

TC-10. Implement secure
web interfaces

Any web interface of IoT components must
implement technical measures to reduce the
exposure of management interfaces and detect
potential unauthorised accesses, making the web
interfaces hard to use for an attacker. This
measure prevents the access to sensitive
functionalities and data (e.g. source code).

FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- GSMA IoT Security Assessment
Checklist - Reference CLP12_5

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Secure
Communication

TC-11. Implement secure
session management

For all sessions that take place in IoT, it is
essential to ensure that active sessions are unique
and cannot be shared or guessed, and that they
are timed out and invalidated when no longer
necessary. Session tokens should be unique for
each session, guaranteeing a minimum level of
entropy. They must never be disclosed in URLs or
error messages. Cookie-based sessions must
have the 'Secure', 'SameSite', and 'HttpOnly'
attributes enabled.

FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

- Proactive Controls for developers
v3.0. OWASP

- GSMA IoT Security Assessment
Checklist - Reference CLP12_5
and CLP13_6

Secure Code
TC-12. Implement secure
coding practices

In the SDLC process, secure coding practices
must be implemented during different phases,
including at least:

Proven strong authentication mechanism to
access the software (e.g. two-factor authentication,
minimum password length, secure transfer, secure
connection, secure credential management, etc.).

Handling all errors and anomalous conditions that
can compromise of sensitive information about the
application

Parameterisation of queries by binding the
variables in the corresponding languages to
prevent code injections in the query language, and

Validation of input and output for forms’
submissions such as with respect to language,
characters, etc. (e.g. whitelisting mechanisms).
These should be addressed in the SDLC to ensure
the design, implementation and testing take this
into account.

UNINTENTIONAL
DAMAGES
(Accidental)

PERSONNEL
PHYSICAL ATTACK
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
DEPLOYMENT AND
INTEGRATION

TESTING AND
ACCEPTANCE

- The BSA Framework for Secure
Software. BSA Software Alliance

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Proactive Controls for developers
v3.0. OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- Fundamental Practices for Secure
Software Development,
SAFECODE

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- "Systems and software engineering
-Software life cycle processes. ISO
12207"

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- GSMA IoT Security Assessment
Checklist - Reference CLP13_6

Secure Code
TC-13. Provide audit
capability

Your SDLC model must ensure that the software
under development (and IoT systems) include non-
repudiation features (design, implementation,
testing, etc.). High-value functionalities must be
tracked to control critical aspects of the software.
This could be mandatory, or highly advisable for
regulatory compliance.

UNINTENTIONAL
DAMAGES
(Accidental)
PHYSICAL ATTACK
LEGAL
NEFARIOUS
ACTIVITY / ABUSE

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- The BSA Framework for Secure
Software. BSA Software Alliance

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Fundamental Practices for Secure
Software Development,
SAFECODE

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- GSMA IoT Security Assessment
Checklist - Reference CLP11_7

Secure Code
TC-14. Follow the principles
of security by design and
by default

Many decisions are made during the design
phase, when the final functionality of the solution is
devised, including access verifications. These

PERSONNEL
UNINTENTIONAL
DAMAGES

DESIGN
DEVELOPMENT/IMP
LEMENTATION

- STRATEGIC PRINCIPLES FOR
SECURING THE INTERNET OF

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

decisions apply to the entire scope of the SDLC,
implemented in the implementation/development
phase, and tested before and after the production
environment. The fail-safe principle must be taken
into account to prepare the device for errors,
anticipate potential disruptions of the service, and
respond appropriately to ensure recovery. The
principle of least privilege must also be observed
to prevent unnecessary or unauthorised accesses.
This set of measures is aimed at safeguarding
data from being compromised.

Implement strong user authentication by enforcing
the change of passwords upon first use, and the
periodic renewal of passwords (e.g. at least once
in 90 days to every 6 months) and session / time
lockout upon multiple failed authentication
attempts (password, or other).

(Accidental)
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

TESTING AND
ACCEPTANCE

THINGS (IoT). U.S. Department of
Homeland Security

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Security Design Principles.
OWASP

- Proactive Controls for developers
v3.0. OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- ISO-IEC 27001. ISO

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

Secure Code
TC-15. Implement software
development techniques

Use development techniques that make
application architecture more flexible. Modular
architectures provide great benefits, not only
during the operation to speed up updates or
identify and troubleshoot, but during development.
Developing large and indivisible blocks implies
having a large team and making it difficult to define
the scope. However, using techniques such as
micro-services, a large block can be broken down
into several to make the development agile,
increase flexibility and scalability, facilitate the
definition of scopes and functionalities, and
decrease errors.

LEGAL
NEFARIOUS
ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION

MAINTENANCE AND
DISPOSAL

- SECURE CODING BEST
PRACTICES HANDBOOK.

- Application Security Verification
Standard 4.0 (ASVS).

- Proactive Controls for developers
v3.0.

- The BSA Framework for Secure
Software.

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).

- Security Assurance in the SDLC for
the Internet of Things - ISACA.

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF).

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- SAFECode_Fundamental_Practice
s_forSDLC.

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements.

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations.

- ISO-IEC 27001.

- CSA IoT Security Controls
Framework.

Secure Code
TC-16. Verify production
code

Ensure that production code comes with secure
compiler options (compiled with security flags) and
does not contain forgotten debug code or debug
symbols.

At production environment, security is crucial and it
must be carefully controlled by ensuring not only
the integrity of the tools but person competence
conducting these activities.

PERSONNEL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE

- Application Security Verification
Standard 4.0 (ASVS). OWASP.

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA).

- ISO-IEC 27001. ISO.

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST.

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM.

- Application Security Verification
Standard 4.0 (ASVS). OWASP.

Security Code
TC-17. Ensure security for
patches and updates

Patches must be carefully managed and deployed
to prevent additional issues with update
capabilities. It is necessary to ensure that all IoT
elements can be updated and patched, and
developers enable notifications of updates and
security patches so that users can receive them for
having information if, when and how patch
software. The installation of security patches and
updates should be user-friendly (e.g. automatic or
in a few clicks).

LEGAL
NEFARIOUS
ACTIVITY / ABUSE

MAINTENANCE AND
DISPOSAL

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- NISTIR 8200 - Interagency Report
on the Status of International

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Update mechanisms include secure/encrypted
delivery of updates, validation of signatures on the
device before installing the patch (secure boot),
etc.

Secure over-the-air updates should be considered
through a secure mechanism that is
cryptographically signed. This must be considered
for all IoT systems, as well as for the software
under construction already in production (patching
as soon as possible for critical vulnerabilities). This
measure prevents CVEs exploited by threat
agents, and potential legal consequences may
arise if due diligence is not in place to keep the
systems in a well-fit state.

Cybersecurity Standardization for
the Internet of Things (IoT). NIST

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- The BSA Framework for Secure
Software. BSA Software Alliance

- ISO-IEC 27001. ISO

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- GSMA IoT Security Assessment
Checklist - Reference CLP12_6

Secure Code
TC-18. Implement measures
against rogue code and
fraud detection

Ensure malicious code is adequately managed
(perform manual reviews, protect the code
repository against tampering, etc.) in your SDLC
model. Validate the application source code and
third-party libraries (e.g. lack of backdoors, time
bombs), and that the application does not grant
unnecessary permissions. This measure includes
the review of all changes before the deployment of
the change.

PERSONNEL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- Application Security Verification
Standard 4.0 (ASVS). OWASP

Secure Code
TC-19. Implement anti-
tampering features

There must be logical tamperproof measures in
IoT systems, that is, measures to monitor and
ensure that the most critical assets (e.g. code)
have not been tampered with (e.g. code-signing).
Tampering could ease the access to sensitive
functionalities or data for threat agents, and allow
the insertion of rogue code in the software under
construction.

UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure
Software. BSA Software Alliance

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Proactive Controls for developers
v3.0. OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- Application Security Verification
Standard 4.0 (ASVS) . OWASP

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- GSMA IoT Security Assessment
Checklist - Reference CLP13_6

Security Reviews
TC-20. Apply secure code
review

Ensure that your SDLC model includes source
code reviews. Code reviews can be manual or
automated. Good practices recommend
performing it manually for each candidate release
(i.e. a member of the development team reviews
what another team member has developed to
ensure quality and share knowledge about the

PERSONNEL
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

development with the team). This is the only tool
available to detect malicious code. Automated
code reviews are commonplace and more cost-
effective compared to manual ones.

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Fundamental Practices for Secure
Software Development,
SAFECODE

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- ISO-IEC 27001. ISO

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

Security Reviews
TC-21. Perform an attack
surface analysis

Carry out this activity during the design phase to
detect any potential threats resulting from
weaknesses. Ensure that your SDLC model
includes this activity to provide value in other
phases. It ensures the control of what is
susceptible to be misused in the software under
development, as well as of potential entry points. It
helps to avoid unauthorised activities and data
leakages.

NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

DESIGN

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

- Proactive Controls for developers
v3.0. OWASP

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- The BSA Framework for Secure
Software. BSA Software Alliance

- GSMA IoT Security Assessment
Checklist - Reference CLP11_5

Security Reviews
TC-22. Perform IoT SDLC
tests

Ensure that your SDLC model makes software
undergo testing prior to production to ensure it has
no vulnerabilities before deployment. This can be
done by means of an audit, and it should be
performed at least, annually (for software under
construction and IoT systems) or for each
candidate release.

FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Fundamental Practices for Secure
Software Development,
SAFECODE

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

- GSMA IoT Security Assessment
Checklist - Reference CLP13_7

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Security Reviews
TC-23. Design a
contingency plan

Take into consideration contingency plans
designed to be integrated into the SDLC. Some
activities of the contingency plan, such as the
development of contingency planning policy and
completion of the business impact analysis, must
be executed in the initial phase of the SDLC.
However, all the activities of the contingency plan
are involved in all the SDLC phases but the last
one, since once the system is operational, the
contingency planning becomes a core part of
continuous supervision and other ongoing security
management tasks.

PERSONNEL
OUTAGES
UNINTENTIONAL
DAMAGES
(Accidental)
PHYSICAL ATTACK
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION

MAINTENANCE AND
DISPOSAL

- ISO-IEC 27001. ISO

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

Security Reviews
TC-24. Monitor
requirements to ensure the
SDLC success

Implement a system to monitor the requirements
agreed by contracts. During the SDLC, a partial or
full breach of compliance with a requirement is a
critical aspect. It would entail an increase in the
project vulnerabilities and might even lead the
project to fail. It is essential to perform a correct
follow-up of the level of compliance reached by the
requirements. To this end, key compliance
indicators can be used (regarding quality, result
required, scope, etc.) by means of a requirement
matrix.

OUTAGES
UNINTENTIONAL
DAMAGES
(Accidental)
LEGAL

FAILURES /
MALFUNCTIONS

REQUIREMENTS

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- The BSA Framework for Secure
Software. BSA Software Alliance

Security of SDLC
Infrastructure

TC-25. Ensure secure
Logging and Monitoring
Implementation

The software under construction and the IoT
systems have to generate high-quality logs,
preventing the inclusion of sensitive information.
Logs have to be monitored (if possible, in real time
using automatic systems) and, reviewed and
analysed by security staff. There are logging
services that send the logs to a remote location
instead of storing them locally so that, if the
software is compromised, the data are not
compromised.

PERSONNEL
PHYSICAL ATTACK
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Proactive Controls for developers
v3.0. OWASP

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- Fundamental Practices for Secure
Software Development,
SAFECODE

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- The BSA Framework for Secure
Software. BSA Software Alliance

- GSMA IoT Security Assessment
Checklist - Reference CLP12_5
and CLP13_6

Security of SDLC
Infrastructure

TC-26. Implement physical
detection systems

Deploy detection systems to control the critical
physical environment (workplace, server rooms,
etc.) where the SDLC infrastructure supports as
temperature control, fire/smoke detection,
alimentation loss, etc.) in order to avoid the loss of
essential support for the SDLC such as
organisation network, external communication,

PERSONNEL
OUTAGES
PHYSICAL ATTACK
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE

REQUIREMENTS

- The BSA Framework for Secure
Software. BSA Software Alliance

- Fundamental Practices for Secure
Software Development,
SAFECODE

- NIST SP 800 53r5: Security and
Privacy Controls for Federal

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

external services as cloud, internet, surveillance,
etc. Deploy backup systems for critical points. DAMAGE / LOSS

Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

Security of SDLC
Infrastructure

TC-27. Define a mitigation
plan for physical damages

Implement a procedure describing the steps to be
taken in order to mitigate the damages that could
be caused to the systems where data are stored
during the SDLC process (communication
systems, network equipment, servers, disks, data
repositories, computers, etc.), as well as the
spaces where they are hosted, to prevent them
from being compromised due to a fire, flood,
electric shock, etc. It is also important to have a
redundant system in place to provide support and
prevent alterations in the SDLC process.

OUTAGES

UNINTENTIONAL
DAMAGES
(Accidental)

PHYSICAL ATTACK

LEGAL

FAILURES /
MALFUNCTIONS

DAMAGE / LOSS

REQUIREMENTS

DESIGN

DEVELOPMENT/IMP
LEMENTATION

TESTING AND
ACCEPTANCE

DEPLOYMENT AND
INTEGRATION

MAINTENANCE AND
DISPOSAL

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- "CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- International Organization for
Standardization (ISO) ISO27001 6
Planning"

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

Security of SDLC
Infrastructure

TC-28. Use whitelists for
allowed applications

Whitelist-based monitoring makes it possible to
strengthen the security of connections and servers
by controlling the applications. Only authorised
applications can be run, thus preventing the
execution of unauthorised software or malware.

Whitelists must be periodically updated in order to
include the latest applications, software has to be
patched and tested to verify their functionality, etc.

OUTAGES
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

MAINTENANCE AND
DISPOSAL

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Proactive Controls for developers
v3.0. OWASP

Security of SDLC
Infrastructure

TC-29. Audit the access to
the SDLC infrastructure

Collect security logs to audit access to the SDLC
resources, such as access to information in
servers, files, data stored in physical rooms, etc.
Regardless of whether the accesses are physical
or logical, they have to be analysed with security
tools (e.g. SIEM) to register the events (access to
information, downloads, modifications, erasure
attempts, etc.), identify users, and monitor the
correct functioning of the process in order to
generate alarms if security is compromised. These
logs must be stored in a safe location and erased
once the period of time stipulated by the industry
elapses (e.g. erasure of financial data after 5
years).

PERSONNEL
OUTAGES
UNINTENTIONAL
DAMAGES
(Accidental)
PHYSICAL ATTACK
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE

DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION

MAINTENANCE AND
DISPOSAL

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- The BSA Framework for Secure
Software. BSA Software Alliance

Security of SDLC
Infrastructure

TC-30. Implement an
identification protocol in
your facilities

Disseminate among internal and external
employees of the organisation a policy on how to
adequately identify themselves in the facilities, and
on how to act and where to go if they detect
unauthorised individuals attempting to access the
facilities of the organisation for malicious purposes
such as sabotage, industrial espionage, or the
theft of confidential information.

PERSONNEL
OUTAGES
PHYSICAL ATTACK
LEGAL
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS

- "Information technology — Security
techniques — Information security
management systems —
Requirements. ISO 27001"

- "Systems and software engineering
—Software life cycle processes.
ISO 12207"

- Recommended Security Controls
for Federal Information Systems
and Organizations. NIST 800-53

- Software Assurance Maturity Model
(SAMM). OWASP SAMM

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Secure
Implementation

TC-31. Enforce the change
of default settings

Security does not end once the software is
produced. During the operation it is necessary to
enforce the end users to safely utilise the
application. Therefore, mechanisms must be
established during the SDLC process to ensure it,
namely: not allowing operation with password and
user by default, ensuring that passwords have a
minimum level of security (length, characters, etc.),
including functions to manage user passwords
(e.g. enforcing change cycles every 90 days, etc.),
closing the user session after an inactivity time,
locking the access out after multiple authentication
fails, enable user notifications of updates, etc.

PERSONNEL
LEGAL
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure
Software. BSA Software Alliance

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Proactive Controls for developers
v3.0. OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- "Systems and software engineering
—

- Software life cycle processes. ISO
12207"

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

- ISO-IEC 27001. ISO

Secure
Implementation

TC-32. Use substantiated
underlying components

Choose well-supported underlying components
that do not require customizations that may lead to
losing security oversight and use proven tools to
apply security hardening practices (e.g.
metasploit).

PERSONNEL
UNINTENTIONAL
DAMAGES
OUTAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE

DAMAGE / LOSS

DEVELOPMENT/IMP
LEMENTATION

TESTING AND
ACCEPTANCE

- "Systems and software engineering
—

- Software life cycle processes. ISO
12207"

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Proactive Controls for developers
v3.0. OWASP

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- The BSA Framework for Secure
Software. BSA Software Alliance

- Security for industrial automation
and control systems. Part 4-1:

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Secure product development
lifecycle requirements. IEC 62443-
4-1

- ISO-IEC 27001. ISO

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

Secure
Implementation

TC-33. Provide secure
configuration options for
end users

Ensure that the SDLC process addresses the
provision of adequate measures in order to include
different setting options for end-users upon first
usage of an IoT solution to enable a continuous
improvement of security, such as, for instance, the
ability to disable features or functionalities that are
not going to be used or to add automatic security
check mechanism.

PERSONNEL
LEGAL
UNINTENTIONAL
DAMAGES
(Accidental)
FAILURES /
MALFUNCTIONS
DAMAGE / LOSS

DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- The BSA Framework for Secure
Software. BSA Software Alliance

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- Proactive Controls for developers
v3.0. OWASP

- Security Assurance in the SDLC for
the Internet of Things - ISACA.
ISACA

- Fundamental Practices for Secure
Software Development,
SAFECODE

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- NIST SP 800 53r5: Security and
Privacy Controls for Federal
Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Secure
Implementation

TC-34. Implement
interoperability open
standards

One of the key problems in the IoT world is the
lack of standardization. This fact causes that the
interconnectivity between different devices is not
easy and autonomous, which makes their
integration difficult. Implement technologies based
on open standards (e.g. OCF, oneM2M, etc.) to
ensure that communication and integration
between different devices is secure and reliable.

PERSONNEL
UNINTENTIONAL
DAMAGES
OUTAGES
LEGAL
FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE
DAMAGE / LOSS

REQUIREMENTS
DESIGN
DEVELOPMENT/IMP
LEMENTATION
TESTING AND
ACCEPTANCE
DEPLOYMENT AND
INTEGRATION
MAINTENANCE AND
DISPOSAL

- Security for industrial automation
and control systems. Part 4-1:
Secure product development
lifecycle requirements. IEC 62443-
4-1

- Software Assurance Maturity Model
(SAMM 1.5v). OWASP

- MITIGATING THE RISK OF
SOFTWARE VULNERABILITIES
BY ADOPTING A SECURE
SOFTWARE DEVELOPMENT
FRAMEWORK (SSDF). NIST

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- The BSA Framework for Secure
Software. BSA Software Alliance

- Proactive Controls for developers
v3.0. OWASP

- "Systems and software engineering
—

- Software life cycle processes. ISO
12207"

- SECURE CODING BEST
PRACTICES HANDBOOK.
VERACODE

- Fundamental Practices for Secure
Software Development,
SAFECODE

- BUILDING SECURITY IN
MATURITY MODEL (BSIMM).
BSIMM

- CSA IoT Security Controls
Framework. Cloud Security Alliance
(CSA)

- Application Security Verification
Standard 4.0 (ASVS). OWASP

- NIST SP 800 53r5: Security and
Privacy Controls for Federal

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Information Systems and
Organizations. NIST

- ISO-IEC 27001. ISO

Secure
Implementation

TC-35. Enable devices to
advertise their access and
network functionality

By enabling devices to advertise their intended
and supported functionality, the threat surface can
be significantly reduced. An indicative practical
example involves the use of IETF RFC 8520 on
Manufacturer Usage Description Specification.

FAILURES /
MALFUNCTIONS
NEFARIOUS
ACTIVITY / ABUSE

DESIGN
DEVELOPMENT/IMP
LEMENTATION

- RFC 8520, Manufacturer Usage
Description Specification

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

A ANNEX:
SDLC STANDARDS AND BEST
PRACTICES

The following table summarises the main standards and best practice guides used during the development of the security measures

previously introduced. These standards and guides bring together the security considerations to take into account through the entire SDLC

process and they are analysed in this study as a baseline for the proposed security measures.

Publisher Title Reference

ISO

(International
Organization for
Standardization)

ISO 12207:2008 Systems and Software Engineering – Software
Life Cycle Processes

https://www.iso.org/standard/43447.html

ISO 30141: Internet of Things - Reference Architecture https://www.iso.org/standard/65695.html

ISO 27001:2013: Information security management https://www.iso.org/standard/54534.html

IEC/ISA

(International
Electrotechnical
Commission/Standard
for Automation)

IEC 62443-4-1: Security for Industrial automation and control
systems.

Part 4-1: Secure product development lifecycle requirements

https://webstore.iec.ch/publication/63337

OWASP

(Open Web Application
Security Project)

IoT Security Guidance https://www.owasp.org/index.php/IoT_Security_Guidance#Developer_IoT_Security_Guidance

Application Security Verification Standard (ASVS) 4.0
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standa
rd_Project#tab=Downloads

Security Champions Playbook https://www.owasp.org/index.php/Security_Champions_Playbook

Security by Design principles https://www.owasp.org/index.php/Security_by_Design_Principles

https://www.iso.org/standard/43447.html
https://www.iso.org/standard/65695.html
https://www.iso.org/standard/54534.html
https://webstore.iec.ch/publication/63337
https://www.owasp.org/index.php/IoT_Security_Guidance#Developer_IoT_Security_Guidance
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Downloads
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Downloads
https://www.owasp.org/index.php/Security_Champions_Playbook
https://www.owasp.org/index.php/Security_by_Design_Principles

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Software Assurance Maturity Model (SAMM 1.5v) https://www.owasp.org/index.php/OWASP_SAMM_Project#tab=Main

CLASP Concepts https://www.owasp.org/index.php/CLASP_Concepts

Internet of Things Top 10 https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10

API Security Top 10 2019 https://www.owasp.org/index.php/OWASP_API_Security_Project

Proactive Controls for developers v3.0

https://www.owasp.org/index.php/OWASP_Proactive_Controls

OWASP Dependency Check https://www.owasp.org/index.php/OWASP_Dependency_Check

BSA

(BSA Software Alliance)
The BSA Framework for Secure Software https://ww2.bsa.org/~/media/Files/Policy/BSA_2019SoftwareSecurityFramework.pdf

CSA

(Cloud Security Alliance)
IoT Security Controls Framework https://cloudsecurityalliance.org/artifacts/iot-security-controls-framework

ETSI
ETSI TS 103 645 Cyber Security for Consumer Internet of
Things

https://www.etsi.org/deliver/etsi_ts/103600_103699/103645/01.01.01_60/ts_103645v010101p.
pdf

NIST

(National Institutes of
Standards and
Technologies)

NIST Cloud Computing Standards Roadmap https://www.nist.gov/publications/nist-cloud-computing-standards-roadmap

Mitigating the Risk of Software Vulnerabilities by Adopting a
Secure Software Development Framework

https://csrc.nist.gov/publications/detail/white-paper/2019/06/11/mitigating-risk-of-software-
vulnerabilities-with-ssdf/draft

IoT Central Security-First Design for IoT Devices https://www.iotcentral.io/blog/security-first-design-for-iot-devices

ISACA

Security Assurance in the SDLC for the Internet of Things
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-
SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf

Implementing Segregation of Duties
https://www.isaca.org/Journal/archives/2016/volume-3/Pages/implementing-segregation-of-
duties.aspx

https://www.owasp.org/index.php/OWASP_SAMM_Project#tab=Main
https://www.owasp.org/index.php/CLASP_Concepts
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://www.owasp.org/index.php/OWASP_Proactive_Controls
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://ww2.bsa.org/~/media/Files/Policy/BSA_2019SoftwareSecurityFramework.pdf
https://cloudsecurityalliance.org/artifacts/iot-security-controls-framework
https://www.nist.gov/publications/nist-cloud-computing-standards-roadmap
https://csrc.nist.gov/publications/detail/white-paper/2019/06/11/mitigating-risk-of-software-vulnerabilities-with-ssdf/draft
https://csrc.nist.gov/publications/detail/white-paper/2019/06/11/mitigating-risk-of-software-vulnerabilities-with-ssdf/draft
https://www.iotcentral.io/blog/security-first-design-for-iot-devices
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf
https://www.isaca.org/Journal/archives/2017/Volume-3/Documents/Security-Assurance-in-the-SDLC-for-the-Internet-of-Things_joa_Eng_0517.pdf
https://www.isaca.org/Journal/archives/2016/volume-3/Pages/implementing-segregation-of-duties.aspx
https://www.isaca.org/Journal/archives/2016/volume-3/Pages/implementing-segregation-of-duties.aspx

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

DHS

(U.S. Department of
Homeland Security)

Strategic Principles for Security the Internet of Things
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Inter
net_of_Things-2016-1115-FINAL....pdf

OMG - CSCC

(Object Management
Group - Cloud Standards
Customer Council)

Cloud Customer Architecture for IoT https://www.omg.org/cloud/deliverables/CSCC-Cloud-Customer-Architecture-for-IoT.pdf

IIC

(Industrial Internet
Consortium)

IoT Security Maturity Model
https://www.iiconsortium.org/pdf/SMM_Description_and_Intended_Use_FINAL_Updated_V1.1.
pdf

USENIX

(Advanced Computing
Systems Association)

Security in the Software Development Lifecycle https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

ONEM2M

(Standards for M2M and
the Internet of Things)

Security in the Software Development Lifecycle http://onem2m.org/cache/mod_roksprocet/1fdfd821aa

CISA

(US-CERT)
Secure Software Development Life Cycle Processes

https://www.us-cert.gov/bsi/articles/knowledge/sdlc-process/secure-software-development-life-
cycle-processes

IEEE

(Institute of Electrical
and Electronics
Engineers)

IoT Security Principles and Best Practices
https://internetinitiative.ieee.org/images/files/resources/white_papers/internet_of_things_feb20
17.pdf

IBM

(International Business
Machines)

IBM Point of view: Internet of Things Security https://www.ibm.com/downloads/cas/7DGG9VBO

TRENDMICRO IoT Security Whitepaper
https://www.trendmicro.com/us/iot-
security/content/main/document/IoT%20Security%20Whitepaper.pdf

SAFECode

Fundamental Practices for Secure Software Development

https://safecode.org/wp-
content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Develop
ment_March_2018.pdf

https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://www.omg.org/cloud/deliverables/CSCC-Cloud-Customer-Architecture-for-IoT.pdf
https://www.iiconsortium.org/pdf/SMM_Description_and_Intended_Use_FINAL_Updated_V1.1.pdf
https://www.iiconsortium.org/pdf/SMM_Description_and_Intended_Use_FINAL_Updated_V1.1.pdf
https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf
http://onem2m.org/cache/mod_roksprocet/1fdfd821aa
https://www.us-cert.gov/bsi/articles/knowledge/sdlc-process/secure-software-development-life-cycle-processes
https://www.us-cert.gov/bsi/articles/knowledge/sdlc-process/secure-software-development-life-cycle-processes
https://internetinitiative.ieee.org/images/files/resources/white_papers/internet_of_things_feb2017.pdf
https://internetinitiative.ieee.org/images/files/resources/white_papers/internet_of_things_feb2017.pdf
https://www.ibm.com/downloads/cas/7DGG9VBO
https://www.trendmicro.com/us/iot-security/content/main/document/IoT%20Security%20Whitepaper.pdf
https://www.trendmicro.com/us/iot-security/content/main/document/IoT%20Security%20Whitepaper.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

SAFECode Comments on EU Cybersecurity Legislation
https://safecode.org/wp-
content/uploads/2018/11/SAFECode_Comments_on_EU_Cybersecurity_Legislation_Oct_201
8_v2.pdf

Tactical Threat Modeling https://safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

The Software Supply Chain Integrity Framework http://safecode.org/publication/SAFECode_Supply_Chain0709.pdf

Managing security risks inherent in the use of third-party
components

https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

Software Security Takes a Champion http://safecode.org/wp-content/uploads/2019/02/Security-Champions-2019-.pdf

Australian Information
Security Management
Conference

Source Code Embedded (SCEM) Security https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1134&context=ism

BSIMM

(Building Security In
Maturity Model)

BSIMM9 https://www.bsimm.com/content/dam/bsimm/reports/bsimm9.pdf

DELLEMC IoT Security: Challenges, solutions and future prospects
https://education.emc.com/content/dam/dell-emc/documents/en-us/2018KS_Gloukhovtsev-
IoT_Security_Challenges_Solutions_and_Future_Prospects.pdf

IoTAC

(IoT Acceleration
Consortium Ministry of
Internal Affairs and
Communications)

IoT Security Guidelines http://www.iotac.jp/wp-content/uploads/2016/01/IoT-Security-Guidelines_ver.1.0.pdf

MSRUAS -

SASTech Journal
Analysis of SDLC Models for Embedded Systems

https://www.researchgate.net/publication/322138583_Analysis_of_SDLC_Models_for_Embedd
ed_Systems

GRAMMATECH A Four-Step Guide to Security Assurance for IoT Devices http://codesonar.grammatech.com/a-four-step-guide-to-security-assurance-for-iot-devices

NCC Group

(National Computing
Centre)

An Implementers’ Guide to Cyber-Security for Internet of Things
Devices and Beyond

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/april/security-of-
things-an-implementers-guide-to-cyber-security-for-internet-of-things-devices-and-beyond/

https://safecode.org/wp-content/uploads/2018/11/SAFECode_Comments_on_EU_Cybersecurity_Legislation_Oct_2018_v2.pdf
https://safecode.org/wp-content/uploads/2018/11/SAFECode_Comments_on_EU_Cybersecurity_Legislation_Oct_2018_v2.pdf
https://safecode.org/wp-content/uploads/2018/11/SAFECode_Comments_on_EU_Cybersecurity_Legislation_Oct_2018_v2.pdf
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
http://safecode.org/publication/SAFECode_Supply_Chain0709.pdf
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
http://safecode.org/wp-content/uploads/2019/02/Security-Champions-2019-.pdf
https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1134&context=ism
https://www.bsimm.com/content/dam/bsimm/reports/bsimm9.pdf
https://education.emc.com/content/dam/dell-emc/documents/en-us/2018KS_Gloukhovtsev-IoT_Security_Challenges_Solutions_and_Future_Prospects.pdf
https://education.emc.com/content/dam/dell-emc/documents/en-us/2018KS_Gloukhovtsev-IoT_Security_Challenges_Solutions_and_Future_Prospects.pdf
http://www.iotac.jp/wp-content/uploads/2016/01/IoT-Security-Guidelines_ver.1.0.pdf
https://www.researchgate.net/publication/322138583_Analysis_of_SDLC_Models_for_Embedded_Systems
https://www.researchgate.net/publication/322138583_Analysis_of_SDLC_Models_for_Embedded_Systems
http://codesonar.grammatech.com/a-four-step-guide-to-security-assurance-for-iot-devices
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/april/security-of-things-an-implementers-guide-to-cyber-security-for-internet-of-things-devices-and-beyond/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/april/security-of-things-an-implementers-guide-to-cyber-security-for-internet-of-things-devices-and-beyond/

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

BOSCH Holistic IoT Security https://www.bosch-si.com/iot-platform/insights/downloads/iot-security.html

GSMA

Security Guidelines for Product Categories – IoT GW
https://www.ccds.or.jp/english/contents/CCDS%20Security%20Guidelines%20for%20Product
%20Categories%20IoT-GW_v2.0_eng.pdf

IoT Security Guidelines and Assessment https://www.gsma.com/iot/iot-security/iot-security-guidelines/

CISCO Secure Development Lifecycle
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-
development-lifecycle.pdf

DZONE The DZONE Guide to Application Security 2015 Edition https://dzone.com/guides/application-security-2015-edition

FCC TAC

(Federal
Communications
Community-
Technological Advisory
Council)

Technical Considerations White Paper
https://transition.fcc.gov/oet/tac/tacdocs/reports/2015/FCC-TAC-Cyber-IoT-White-Paper-
Rel1.1-2015.pdf

Secure Software
Foundation

Framework Secure Software https://www.securesoftwarealliance.org/FrameworkSecureSoftware_v1.pdf

PCI Security Standards
Council

Payment Card Industry Software Security Framework
https://www.pcisecuritystandards.org/documents/PCI-Secure-Software-Standard-
v1_0.pdf?agreement=true&time=1566543843174

IJETMAS

Security Secure Software Development Life Cycle http://www.ijetmas.com/admin/resources/project/paper/f201509231443005088.pdf

Threat Modeling for Secure Embedded Software https://pdfs.semanticscholar.org/d3a8/8f79f3baf7c1f3ad75fada8ec2b71b27ca99.pdf

IPA IoT Safety/Security Design Tutorial https://www.ipa.go.jp/files/000053921.pdf

VDOO Integrating Security into the IoT SDLC https://www.vdoo.com/blog/integrating-security-into-the-iot-sdlc/

https://www.bosch-si.com/iot-platform/insights/downloads/iot-security.html
https://www.ccds.or.jp/english/contents/CCDS%20Security%20Guidelines%20for%20Product%20Categories%20IoT-GW_v2.0_eng.pdf
https://www.ccds.or.jp/english/contents/CCDS%20Security%20Guidelines%20for%20Product%20Categories%20IoT-GW_v2.0_eng.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://dzone.com/guides/application-security-2015-edition
https://transition.fcc.gov/oet/tac/tacdocs/reports/2015/FCC-TAC-Cyber-IoT-White-Paper-Rel1.1-2015.pdf
https://transition.fcc.gov/oet/tac/tacdocs/reports/2015/FCC-TAC-Cyber-IoT-White-Paper-Rel1.1-2015.pdf
https://www.securesoftwarealliance.org/FrameworkSecureSoftware_v1.pdf
https://www.pcisecuritystandards.org/documents/PCI-Secure-Software-Standard-v1_0.pdf?agreement=true&time=1566543843174
https://www.pcisecuritystandards.org/documents/PCI-Secure-Software-Standard-v1_0.pdf?agreement=true&time=1566543843174
http://www.ijetmas.com/admin/resources/project/paper/f201509231443005088.pdf
https://pdfs.semanticscholar.org/d3a8/8f79f3baf7c1f3ad75fada8ec2b71b27ca99.pdf
https://www.ipa.go.jp/files/000053921.pdf
https://www.vdoo.com/blog/integrating-security-into-the-iot-sdlc/

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

ERNW Security Bsides Ljubljana IoT and SDLC
https://0x7df.bsidesljubljana.si/wp-
content/uploads/sites/9/ERNW_Scheuring_Security_BSides_Ljubljana_IoT_and_SDLC_2015.
pdf

Advanced Science and
Technology Letters

A Study of Developing Security Requirements for

Internet of Things
https://pdfs.semanticscholar.org/6aec/74231f1716bd350b1c60b2bc3168471e1c13.pdf

WIND RIVER Managing the IoT Lifecycle from Design through End-of-Life https://www.windriver.com/whitepapers/managing-iot-lifecycle/2434-Cloud_white_paper.pdf

DCMS-UK

(Department for Digital,
Culture, Media and

Sport, UK Government)

Code of Practice for Consumer IoT Security
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/
file/773867/Code_of_Practice_for_Consumer_IoT_Security_October_2018.pdf

SECURA

Source Code Analysis
https://www.secura.com/pathtoimg.php?id=1213&image=source_code_analysis.p
df

Security Testing Compliance for IoT v0.5
https://www.secura.com/pathtoimg.php?id=1199&image=security_testing___compliance_for_i
ot_v0.5.pdf

BISEC

(International
Conference on Business
Information Security)

The Role of Software testing in a Security-Oriented IoT Software
Development Process

https://www.metropolitan.ac.rs/files/2018/01/BISEC2017-Zbornik-ilovepdf-
compressed.pdf

Zephyr Continuous Testing Agility 2020
https://conference.eurostarsoftwaretesting.com/wp-
content/uploads/ContinuousTestingAgility2020-1-1.pdf

ScienceDirect Secure IoT Devices for the Maintenance of Machine Tools
https://reader.elsevier.com/reader/sd/pii/S2212827116309878?token=626E3AF21033F555197
704E40AF514E48A61FEAA92C01B196F9CB9390B6B292E1C1119714454FAE438EAD6E14
434EDF5

GitHub Secure Software Development in the Financial Services Industry https://resources.github.com/downloads/GitHub_eBook_FSI_Secure_Development.pdf

INTEL Secure Solutions for the IoT
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/developing-
solutions-for-iot.pdf

https://0x7df.bsidesljubljana.si/wp-content/uploads/sites/9/ERNW_Scheuring_Security_BSides_Ljubljana_IoT_and_SDLC_2015.pdf
https://0x7df.bsidesljubljana.si/wp-content/uploads/sites/9/ERNW_Scheuring_Security_BSides_Ljubljana_IoT_and_SDLC_2015.pdf
https://0x7df.bsidesljubljana.si/wp-content/uploads/sites/9/ERNW_Scheuring_Security_BSides_Ljubljana_IoT_and_SDLC_2015.pdf
https://pdfs.semanticscholar.org/6aec/74231f1716bd350b1c60b2bc3168471e1c13.pdf
https://www.windriver.com/whitepapers/managing-iot-lifecycle/2434-Cloud_white_paper.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773867/Code_of_Practice_for_Consumer_IoT_Security_October_2018.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/773867/Code_of_Practice_for_Consumer_IoT_Security_October_2018.pdf
https://www.secura.com/pathtoimg.php?id=1213&image=source_code_analysis.pdf
https://www.secura.com/pathtoimg.php?id=1213&image=source_code_analysis.pdf
https://www.secura.com/pathtoimg.php?id=1199&image=security_testing___compliance_for_iot_v0.5.pdf
https://www.secura.com/pathtoimg.php?id=1199&image=security_testing___compliance_for_iot_v0.5.pdf
https://www.metropolitan.ac.rs/files/2018/01/BISEC2017-Zbornik-ilovepdf-compressed.pdf
https://www.metropolitan.ac.rs/files/2018/01/BISEC2017-Zbornik-ilovepdf-compressed.pdf
https://conference.eurostarsoftwaretesting.com/wp-content/uploads/ContinuousTestingAgility2020-1-1.pdf
https://conference.eurostarsoftwaretesting.com/wp-content/uploads/ContinuousTestingAgility2020-1-1.pdf
https://reader.elsevier.com/reader/sd/pii/S2212827116309878?token=626E3AF21033F555197704E40AF514E48A61FEAA92C01B196F9CB9390B6B292E1C1119714454FAE438EAD6E14434EDF5
https://reader.elsevier.com/reader/sd/pii/S2212827116309878?token=626E3AF21033F555197704E40AF514E48A61FEAA92C01B196F9CB9390B6B292E1C1119714454FAE438EAD6E14434EDF5
https://reader.elsevier.com/reader/sd/pii/S2212827116309878?token=626E3AF21033F555197704E40AF514E48A61FEAA92C01B196F9CB9390B6B292E1C1119714454FAE438EAD6E14434EDF5
https://resources.github.com/downloads/GitHub_eBook_FSI_Secure_Development.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/developing-solutions-for-iot.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/developing-solutions-for-iot.pdf

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

SANS Institute

A Security Checklist for Web Application Design
https://www.sans.org/reading-room/whitepapers/securecode/security-checklist-web-
application-design-1389

Secure Coding. Practical steps to defend your web apps.

https://software-security.sans.org/resources/paper/cissp/application-security

CMU

(Carnegie Mellon
University)

Threat Modeling: A Summary of Available Methods https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=524448

Security Quality Requirements Engineering Technical Report https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=7657

VERACODE Secure Coding Best Practices https://info.veracode.com/secure-coding-best-practices-hand-book-guide-resource.html

INDUSA 10 Challenges Every Software Product Developer Faces http://www.indusa.com/articles/10-challenges-every-software-product-developer-faces/

LANDesk Resolving the Top Three Patch Management Challenges https://www.infosecurityeurope.com/__novadocuments/20559

IEEE
Proposed Embedded Security Framework for Internet of Things.

https://www.researchgate.net/profile/Jaydip_Sen/publication/252013823_Proposed_Embedded
_Security_Framework_for_Internet_of_Things_IoT/links/00b495278c92a797d9000000/Propos
ed-Embedded-Security-Framework-for-Internet-of-Things-IoT.pdf

UL
UL 2900 series Standard for Software Cybersecurity for
Network-Connectable Products

https://standardscatalog.ul.com/standards/en/standard_2900-1_1

https://www.sans.org/reading-room/whitepapers/securecode/security-checklist-web-application-design-1389
https://www.sans.org/reading-room/whitepapers/securecode/security-checklist-web-application-design-1389
https://software-security.sans.org/resources/paper/cissp/application-security
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=524448
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=7657
https://info.veracode.com/secure-coding-best-practices-hand-book-guide-resource.html
http://www.indusa.com/articles/10-challenges-every-software-product-developer-faces/
https://www.infosecurityeurope.com/__novadocuments/20559
https://www.researchgate.net/profile/Jaydip_Sen/publication/252013823_Proposed_Embedded_Security_Framework_for_Internet_of_Things_IoT/links/00b495278c92a797d9000000/Proposed-Embedded-Security-Framework-for-Internet-of-Things-IoT.pdf
https://www.researchgate.net/profile/Jaydip_Sen/publication/252013823_Proposed_Embedded_Security_Framework_for_Internet_of_Things_IoT/links/00b495278c92a797d9000000/Proposed-Embedded-Security-Framework-for-Internet-of-Things-IoT.pdf
https://www.researchgate.net/profile/Jaydip_Sen/publication/252013823_Proposed_Embedded_Security_Framework_for_Internet_of_Things_IoT/links/00b495278c92a797d9000000/Proposed-Embedded-Security-Framework-for-Internet-of-Things-IoT.pdf
https://standardscatalog.ul.com/standards/en/standard_2900-1_1

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

B ANNEX:
SECURITY IN SDLC MODELS

SDLC models are conceptual frameworks that are used to detail all activities relating to software development and the interrelations between

these activities. This conceptualization allows for a structured, coordinated and well-communicated software development approach among all

members of the team. Different SDLC models have been proposed over the years, including Waterfall, Agile, Spiral, DevOps, DevSecOps,

etc.

In general, SDLC models fall under one of the following three categories: sequential, iterative or agile (this includes the agile methods). The

difference lies in the transition from one SDLC phase to another. Reflecting the diversity and intricacies of the different SDLC models, security

considerations are taken into account and are incorporated in different ways. There exist several possible categorizations of the SDLC

phases. In the context of this study and focusing on IoT, six distinct phases are identified (further details may be found in Section 2.2), namely:

1. Requirements, (Definition and Identification).

2. Software design.

3. Development/implementation.

4. Testing and acceptance.

5. Deployment and integration.

6. Maintenance and disposal.

The Waterfall SDLC model represents the 6 phases in a sequential, linear flow. Accordingly, requirements are defined at the beginning of the

process. While this process might be useful for rigid and highly structured projects, it might not be very useful when considering modern

development cycles that require high degrees of adaptation, extensibility and flexibility (e.g., IoT, cloud-based, etc.). Conversely, the Agile

SDLC model is meant to represent a more flexible means to define and capture new requirements. For this reason, it makes use of short,

time-constrained development cycles that facilitate the adaptability of the final software product or service by means of validation of the

outputs of these agile cycles. The Waterfall and Agile models are the foundations for other, more recently introduced models.49

49 See https://www.theseus.fi/bitstream/handle/10024/135804/Williams_Paivi.pdf?sequence=1&isAllowed=y

https://www.theseus.fi/bitstream/handle/10024/135804/Williams_Paivi.pdf?sequence=1&isAllowed=y%20%20

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

When considering security, the Waterfall model plans for security at the beginning of the SDLC, but actual security tests are not carried out

until the final phases (Development/Implementation or Integration and Testing). This implies that security is not an integral part of the

development process and is addressed only when the final product is nearing completion. In the Agile model, security (and other types of)

testing take place in the context of every cycle and not as a whole, similarly to the definition of security requirements. Moreover, it is normally

the case that different teams are in charge of different cycles and therefore capturing of security requirements and testing might differ in-

between cycles. In the context of agile models, the most critical aspect for security is to ensure the consistency of security requirements,

design setup and testing in each iteration.

Building on the Waterfall model, more iterative SDLC models were proposed such as the Spiral one. Software engineers using the Spiral

SDLC model collect a series of requirements at the beginning of the process, which are then checked at every stage of development. This

allows the inclusion of additional requirements as necessary in every iteration or “spiral”, so that by the time the application reaches the

deployment and maintenance phases it has considered additional security requirements that were not planned for in the beginning.

Building on the Agile SDLC model, the DevOps model provides faster release cycles since deployment and integration are also a part of the

cycle (in traditional Agile, it is only software design and development/implementation). DevOps was introduced to eliminate the barriers

between development and operations, bringing together professionals from both teams and accordingly leads to integrated and more

complete security tests. In addition, other well-known SDLC models based on Agile include XP (Extreme Programming), Scrum and Kanban.

Of particular interest to secure SDLC is the DevSecOps SDLC model, which integrates security practices in the DevOps methodology. In this

way, security is considered in all phases of software development in an agile manner.

In the context of IoT software development, the particularities of this dynamic and adaptive ecosystem should be taken into account when

selecting the most appropriate SDLC model. Given the diversities of the different models and the way in which security is addressed in each

one of them, it is evident that the decision on which SDLC model to adopt should be given considerable thought, since it will affect the overall

outcome. Figure 10 depicts different SDLC models and how they manage the different SDLC phases50.

50 Figure 9 and discussion in Annex C are indicative when it comes to the listed SDLC models, referring to the most well-known ones. For a full coverage
and description of available SDLC models the reader is referred to relevant, up-to-date software engineering textbooks.

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

Figure 9: Overview of SDLC models51

51 Figure based on and adapted from https://analyze.co.za/the-transition-to-devops/

https://analyze.co.za/the-transition-to-devops/

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

C ANNEX:
IOT SDLC TESTING

Tests Description

Dynamic Analysis Security Testing (DAST)

DAST allows to study the software when it runs, by implementing a package of prebuilt attacks (less limited and more automated than a human
attacker) and aiming them against the executed software. DAST can find vulnerabilities when all of the components are integrated and if the test is
successful, an attacker can carry out the attack. It is recommended to use DAST with SAST to obtain more complete test analysis.58This kind of
test can be fully automatic using security scanners and/or vulnerability scanning tools, or complemented with a manual review to check the results
and perform complex tests manually.

Static Analysis Security Testing (SAST)
SAST involves the use of tools and techniques to analyse all elements of software (including source code, bytecode and any used binaries). SAST
tests software that is not currently executed and is thus complementary to DAST. The aim is to identify coding and design software aspects that
might indicate the existence of possible known vulnerabilities.

Interactive Analysis Security Testing (IAST)
This type of security testing aims to be an evolution of DAST testing with the knowledge of the SAST testing (information flows), where the test
checks the execution flow during runtime. It is usually automated and used in DevOps scenarios.

Software Composition Analysis (SCA)

Software dependencies are as important as the code itself, and vulnerabilities detected within them can have severe consequences. This is
particularly the case with IoT software, which is commonly comprised of several third-party components and libraries. It is thus recommended as a
good practice to check whether software dependencies can be trusted before deployment in a production environment. This provides more
confidence in the software as a whole.

Validation (Acceptance) Testing

Validation acceptance testing is focused on realistic test scenarios, such as sequences of actions performed by the user (use cases). The
outcomes of this type of testing yields whether the system can be securely used in real-world scenarios, Validation acceptance tests are the final
and most critical test prior to deployment and integration, because it will determine whether the software is ready to roll out to the market. This type
of testing aims at assessing whether the software does what it was envisaged to do at the beginning of the project, i.e. based on the security
requirements.

Fuzzing test

Fuzzing generates (or mutates) large sets of data and passes it to an application’s data parsers to check its reaction. This kind of testing technique
can reveal potential security vulnerabilities and weaknesses and help to mitigate attacks such as ones based on buffer overflows and data input
validation (e.g. cross-site scripting). In the case of IoT, complexity of fuzzing increases in accordance to the large number of available protocols
and data formats, so this is a particularity that needs to be catered for by the testing team.

Security verification and validation

Software verification is the process used to determine whether the outcome of a given stage of product development (i.e. software development)
conforms exactly to the requirements set at the beginning of the stage. Software validation is the process used to determine whether the product
(computer program, operating system, appliance etc.) satisfies its intended use and user needs. Requirements, lifecycle processes and other
supporting artifacts can also be validated for their conformance to the expected results. Careful consideration has to be given to IoT software,

GOOD PRACTICES FOR SECURITY OF IOT
 NOVEMBER 2019

since the logic and functionality of the software depends on the context of use, therefore appropriate tests should be devised to ensure full
coverage of the expected functionality.

Manual Code Review

Despite being a time-consuming activity, the manual review of code is one of the best options to detect potential security issues that might reside
within the code. Automated tools can provide a solid basis of understanding, however employing experienced security experts to review the code
may lead to the detection of more complex security issues (e.g. logic bombs) following the information flow. A slight variation of this testing
technique is peer code review, where a different member of the team checks the code developed to ensure that best practices (quality and
security) have indeed been followed.

Load Testing

This type of testing aims to check whether the software is able to operate in high load conditions (e.g. Internet rush hour), taking into account the
constraints in terms of resources, which many IoT solutions face. This might provide interesting results in terms of availability of the systems. It is
important to keep in mind to check for all flows in an IoT software solution and to load test all of them, including the ones referring to cloud and
possible backend servers.

Stress Testing

Stress testing test is similar to load testing, but in this case the objective is to find the point where the tested software will fail, i.e. the maximum
load that it is able to manage. This kind of test reveals the potential impact on availability of the software, however in the context of IoT it should be
taken with a grain of salt, since due to limited resources and the need to have lightweight solutions the results will need to be seen under this
perspective.

Regression Testing

Regression testing type is one of the most useful ones in IoT ecosystems, given that they are subject to frequent software updates to enhance their
functionalities and security levels. Accordingly, regression is used to ensure that functionalities already deployed in the software or solution work
after a modification. This way, not only new modules or functionalities are checked, but previous ones are also tested for compatibility or any other
inadvertent changes in their behavior after a new type of functionality has been deployed. Regression testing is particularly common in DevOps
scenarios, where software is continuously tested prior to its deployment.

Integration Testing

Integration testing is used in software testing cases where the solution is made up of different elements. In such cases, it is necessary to check
whether the different elements can work together as expected. IoT software development by definition falls under this category, since it integrates
components of end devices, communications/networks, cloud-based ones, etc. Accordingly, integration testing is significant in the context of IoT
since it is meant to verify that no security issues will arise when all elements of the IoT solution are integrated.

Penetration Testing

Penetration testing is by definition related to security. Such tests consist of simulated attacks on the developed software solution in order to
evaluate its security solution. The level of sophistication of the testing team influences the success of penetration tests, since the more
sophisticated the attack, the more it is expected to uncover security issues. Pentesting IoT software has recently received attention with the
proliferation of IoT end devices and the popularity of publicized attacks on them, as well as the publication of relevant automated tools52.

Safety Testing

IoT is inherently linked to cyber-physical deployments and this implies the need to consider safety in tandem with cybersecurity, as emphasized in
the ENISA studies on Smart Manufacturing53 and Industry 4.054. Safety testing is aimed at addressing safety aspects related to the developed
software solutions and examine any potential adverse effects. All elements of the software that may impact the physical aspects of the IoT system
or service should be examined during these tests, as well as any interdependencies of said elements.

52 See https://www.darkreading.com/threat-intelligence/new-metasploit-extension-available-for-testing-iot-device-security/
53 See https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot
54 See https://www.enisa.europa.eu/publications/industry-4-0-cybersecurity-challenges-and-recommendations

https://www.darkreading.com/threat-intelligence/new-metasploit-extension-available-for-testing-iot-device-security/
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot
https://www.enisa.europa.eu/publications/industry-4-0-cybersecurity-challenges-and-recommendations

 T
P

-0
2

-1
9

-8
8

0
-E

N
-N

ABOUT ENISA

The European Union Agency for Cybersecurity (ENISA) has been working to make Europe

cyber secure since 2004. ENISA works with the EU, its member states, the private sector

and Europe’s citizens to develop advice and recommendations on good practice in

information security. It assists EU member states in implementing relevant EU legislation

and works to improve the resilience of Europe’s critical information infrastructure and

networks. ENISA seeks to enhance existing expertise in EU member states by supporting

the development of cross-border communities committed to improving network and

information security throughout the EU. Since 2019, it has been drawing up cybersecurity

certification schemes. More information about ENISA and its work can be found at

www.enisa.europa.eu.

ISBN 978-92-9204-316-2

DOI: 10.2824/742784

doi: 0000.0000/000000

http://www.enisa.europa.eu/

